[1] Y. Li, D.-Z. Pan, H. Chanson, C.-H. Pan, Real-time characteristics of tidal bore propagation in the Qiantang River Estuary, China, recorded by marine radar, Continental Shelf Research, Vol. 180, pp. 48-58, 2019.
[2] H. Wu, J. Song, Q. Zhu, Consistent Riccati expansion solvability and soliton–cnoidal wave solutions of a coupled KdV system, Applied Mathematics Letters, Vol. 135, pp. 108439, 2023.
[3] S. Deng, Z. Deng, Approximate analytical solutions of generalized fractional Korteweg-de Vries equation, Thermal Science, Vol. 27, No. 3 Part A, pp. 1873-1879, 2023.
[4] J. Cui, D. Li, T.-F. Zhang, Symmetry reduction and exact solutions of the (3+1)-dimensional nKdV-nCBS equation, Applied Mathematics Letters, Vol. 144, pp. 108718, 05/01, 2023.
[5] R. I. Ivanov, On the modelling of short and intermediate water waves, Applied Mathematics Letters, Vol. 142, pp. 108653, 2023/08/01/, 2023.
[6] D. Benney, J. Luke, On the interactions of permanent waves of finite amplitude, Journal of Mathematics and Physics, Vol. 43, No. 1-4, pp. 309-313, 1964.
[7] J. Akter, M. Ali Akbar, Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method, Results in Physics, Vol. 5, pp. 125-130, 2015/01/01/, 2015.
[8] S. M. R. Islam, Applications of the exp(-Φ(ξ))-Expansion Method to Find Exact Traveling Wave Solutions of the Benney-Luke Equation in Mathematical Physics, American journal of Applied Mathematics, Vol. 3, pp. 100-105, 04/29, 2015.
[9] A. K. M. K. S. Hossain, P. M. A. Akbar, Traveling wave solutions of Benny Luke equation via the enhanced ( G ' / G )-expansion method, Ain Shams Engineering Journal, Vol. 12, 05/01, 2021.
[10] U. Khan, R. Ellahi, R. A. Khan, S. T. Mohyud-Din, Extracting new solitary wave solutions of Benny–Luke equation and Phi-4 equation of fractional order by using (G′/G)-expansion method, Optical and Quantum Electronics, Vol. 49, pp. 1-14, 2017.
[11] T. Houria, A. Yildirim, T. Hayat, O. Aldossary, A. Biswas, Shock wave solution of Benney-Luke equation, Romanian Reports of Physics, Vol. 57, 01/01, 2012.
[12] B. Ghanbari, M. Inc, A. Yusuf, D. Baleanu, New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics, AIMS Mathematics, Vol. 4, pp. 1523-1539, 09/01, 2019.
[13] M. Ablowitz, C. Curtis, On the evolution of perturbations to solutions of the Kadomtsev–Petviashvilli equation using the Benney–Luke equation, Journal of Physics A: Mathematical and Theoretical, Vol. 44, pp. 195202, 04/12, 2011.
[14] J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, Vol. 19, pp. 847-851, 03/01, 2004.
[15] J.-H. He, X.-H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, Vol. 30, pp. 700-708, 11/01, 2006.
[16] H. Ma, SIMPLIFIED HAMILTONIAN-BASED FREQUENCY-AMPLITUDE FORMULATION FOR NONLINEAR VIBRATION SYSTEMS, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, pp. 445, 07/28, 2022.
[17] X. Li, D. Wang, T. Saeed, Multi-scale numerical approach to the polymer filling process in the weld line region, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, No. 2, pp. 363-380, 2022.
[18] H. Ma, Variational principle for a generalized Rabinowitsch lubrication, Thermal Science, Vol. 27, pp. 71-71, 01/01, 2022.
[19] S.-Q. Wang, A variational approach to nonlinear two-point boundary value problems, Computers & Mathematics with Applications, Vol. 58, No. 11-12, pp. 2452-2455, 2009.
[20] S. A. Faghidian, A. Tounsi, DYNAMIC CHARACTERISTICS OF MIXTURE UNIFIED GRADIENT ELASTIC NANOBEAMS, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, pp. 539, 11/30, 2022.
[21] C.-H. He, C. Liu, Variational principle for singular waves, Chaos, Solitons & Fractals, Vol. 172, pp. 113566, 07/01, 2023.
[22] C. Miehe, S. Mauthe, H. Ulmer, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn–Hilliard-type and standard diffusion in elastic solids, International Journal for Numerical Methods in Engineering, Vol. 99, 09/07, 2014.
[23] P.-H. Kuo, T.-L. Tu, Y.-W. Chen, W.-Y. Jywe, H.-T. Yau, Thermal displacement prediction model with a structural optimized transfer learning technique, Case Studies in Thermal Engineering, Vol. 49, pp. 103323, 09/01, 2023.
[24] P.-H. Kuo, Y.-W. Chen, T. H. Hsieh, W. Jywe, H.-T. Yau, A Thermal Displacement Prediction System With an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network, IEEE Sensors Journal, Vol. 23, pp. 12574-12586, 2023.
[25] A. Biswas, D. Milovic, D. S. Kumar, A. Yildirim, Perturbation of shallow water waves by semi-inverse variational principle, Indian Journal of Physics, Vol. 87, 06/01, 2013.
[26] J. Lu, L. Ma, Numerical analysis of space-time fractional Benjamin-Bona-Mahony equation, Thermal Science, Vol. 27, pp. 1755-1762, 01/01, 2023.
[27] Y. Wu, J.-H. He, Variational principle for the Kaup-Newell system, Journal of Computational Applied Mechanics, Vol. 54, No. 3, pp. 405-409, 2023.
[28] X.-Q. Cao, B.-N. Liu, M.-Z. Liu, K.-C. Peng, W.-L. Tian, Variational principles for two kinds of non-linear geophysical KdV equation with fractal derivatives, Thermal Science, Vol. 26, No. 3 Part B, pp. 2505-2515, 2022.
[29] Q. Ma, R. Yuan, C. Wang, Variational method to fractal long-wave model with variable coefficients, Thermal Science, Vol. 27, No. 3 Part A, pp. 1779-1786, 2023.
[30] J. Sun, Variational principle for fractal high-order long water-wave equation, Thermal Science, Vol. 27, No. 3 Part A, pp. 1899-1905, 2023.
[31] A. Bekir, Ö. Güner, A. Bhrawy, A. Biswas, Solving nonlinear fractional differential equations using exp-function and (G/G′) -expansion methods, Romanian Journal of Physics, Vol. 60, 01/01, 2015.
[32] M. Dehghan, J. Manafian, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 21, pp. 736-753, 08/09, 2011.
[33] A. Biswas, M. Ekici, A. Sonmezoglu, M. Belić, Highly dispersive optical solitons with cubic–quintic–septic law by extended Jacobi's elliptic function expansion, Optik, Vol. 183, 02/01, 2019.
[34] S. T. Mohyud‐Din, Y. Khan, N. Faraz, A. Yıldırım, Exp‐function method for solitary and periodic solutions of Fitzhugh‐Nagumo equation, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 22, No. 3, pp. 335-341, 2012.
[35] Z. Hadas, V. Vetiska, V. Singule, O. Andrs, J. Kovar, J. Vetiska, Energy Harvesting from Mechanical Shocks Using A Sensitive Vibration Energy Harvester Regular Paper, International Journal of Advanced Robotic Systems, Vol. 9, pp. 1, 05/15, 2017.
[36] M.-U. Noll, L. Lentz, U. von Wagner, On the discretization of a bistable cantilever beam with application to energy harvesting, Facta Universitatis, Series: Mechanical Engineering, Vol. 17, No. 2, pp. 125-139, 2019.