Shock-like Waves with Finite Amplitudes

Document Type : Research Paper

Authors

1 School of Science, Xi’an University of Architecture and Technology, Xi’an, P. R. China.

2 School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, P. R. China.

3 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China.

4 National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University,199 Ren-Ai Road, Suzhou, P. R. China.

Abstract

The tidal wave in the Qiantang River, Hangzhou City, China is quite different from that of the KdV equation, it is a shock-like wave with a finite amplitude. This phenomenon has mathematicians adjusting their solitary wave models on how such waves behave. This paper applies the variational theory to insight into the energy behavior of the tidal wave, which can be modeled by the Benny-Luke equation, and the exp-function method is used to figure out the solution structure. This paper provides a new window for designing energy-harvesting devices from the shock-like waves.

Keywords

Main Subjects

[1]          Y. Li, D.-Z. Pan, H. Chanson, C.-H. Pan, Real-time characteristics of tidal bore propagation in the Qiantang River Estuary, China, recorded by marine radar, Continental Shelf Research, Vol. 180, pp. 48-58, 2019.
[2]          H. Wu, J. Song, Q. Zhu, Consistent Riccati expansion solvability and soliton–cnoidal wave solutions of a coupled KdV system, Applied Mathematics Letters, Vol. 135, pp. 108439, 2023.
[3]          S. Deng, Z. Deng, Approximate analytical solutions of generalized fractional Korteweg-de Vries equation, Thermal Science, Vol. 27, No. 3 Part A, pp. 1873-1879, 2023.
[4]          J. Cui, D. Li, T.-F. Zhang, Symmetry reduction and exact solutions of the (3+1)-dimensional nKdV-nCBS equation, Applied Mathematics Letters, Vol. 144, pp. 108718, 05/01, 2023.
[5]          R. I. Ivanov, On the modelling of short and intermediate water waves, Applied Mathematics Letters, Vol. 142, pp. 108653, 2023/08/01/, 2023.
[6]          D. Benney, J. Luke, On the interactions of permanent waves of finite amplitude, Journal of Mathematics and Physics, Vol. 43, No. 1-4, pp. 309-313, 1964.
[7]          J. Akter, M. Ali Akbar, Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method, Results in Physics, Vol. 5, pp. 125-130, 2015/01/01/, 2015.
[8]          S. M. R. Islam, Applications of the exp(-Φ(ξ))-Expansion Method to Find Exact Traveling Wave Solutions of the Benney-Luke Equation in Mathematical Physics, American journal of Applied Mathematics, Vol. 3, pp. 100-105, 04/29, 2015.
[9]          A. K. M. K. S. Hossain, P. M. A. Akbar, Traveling wave solutions of Benny Luke equation via the enhanced ( G ' / G )-expansion method, Ain Shams Engineering Journal, Vol. 12, 05/01, 2021.
[10]        U. Khan, R. Ellahi, R. A. Khan, S. T. Mohyud-Din, Extracting new solitary wave solutions of Benny–Luke equation and Phi-4 equation of fractional order by using (G′/G)-expansion method, Optical and Quantum Electronics, Vol. 49, pp. 1-14, 2017.
[11]        T. Houria, A. Yildirim, T. Hayat, O. Aldossary, A. Biswas, Shock wave solution of Benney-Luke equation, Romanian Reports of Physics, Vol. 57, 01/01, 2012.
[12]        B. Ghanbari, M. Inc, A. Yusuf, D. Baleanu, New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics, AIMS Mathematics, Vol. 4, pp. 1523-1539, 09/01, 2019.
[13]        M. Ablowitz, C. Curtis, On the evolution of perturbations to solutions of the Kadomtsev–Petviashvilli equation using the Benney–Luke equation, Journal of Physics A: Mathematical and Theoretical, Vol. 44, pp. 195202, 04/12, 2011.
[14]        J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, Vol. 19, pp. 847-851, 03/01, 2004.
[15]        J.-H. He, X.-H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, Vol. 30, pp. 700-708, 11/01, 2006.
[16]        H. Ma, SIMPLIFIED HAMILTONIAN-BASED FREQUENCY-AMPLITUDE FORMULATION FOR NONLINEAR VIBRATION SYSTEMS, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, pp. 445, 07/28, 2022.
[17]        X. Li, D. Wang, T. Saeed, Multi-scale numerical approach to the polymer filling process in the weld line region, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, No. 2, pp. 363-380, 2022.
[18]        H. Ma, Variational principle for a generalized Rabinowitsch lubrication, Thermal Science, Vol. 27, pp. 71-71, 01/01, 2022.
[19]        S.-Q. Wang, A variational approach to nonlinear two-point boundary value problems, Computers & Mathematics with Applications, Vol. 58, No. 11-12, pp. 2452-2455, 2009.
[20]        S. A. Faghidian, A. Tounsi, DYNAMIC CHARACTERISTICS OF MIXTURE UNIFIED GRADIENT ELASTIC NANOBEAMS, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, pp. 539, 11/30, 2022.
[21]        C.-H. He, C. Liu, Variational principle for singular waves, Chaos, Solitons & Fractals, Vol. 172, pp. 113566, 07/01, 2023.
[22]        C. Miehe, S. Mauthe, H. Ulmer, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn–Hilliard-type and standard diffusion in elastic solids, International Journal for Numerical Methods in Engineering, Vol. 99, 09/07, 2014.
[23]        P.-H. Kuo, T.-L. Tu, Y.-W. Chen, W.-Y. Jywe, H.-T. Yau, Thermal displacement prediction model with a structural optimized transfer learning technique, Case Studies in Thermal Engineering, Vol. 49, pp. 103323, 09/01, 2023.
[24]        P.-H. Kuo, Y.-W. Chen, T. H. Hsieh, W. Jywe, H.-T. Yau, A Thermal Displacement Prediction System With an Automatic LRGTVAC-PSO Optimized Branch Structured Bidirectional GRU Neural Network, IEEE Sensors Journal, Vol. 23, pp. 12574-12586, 2023.
[25]        A. Biswas, D. Milovic, D. S. Kumar, A. Yildirim, Perturbation of shallow water waves by semi-inverse variational principle, Indian Journal of Physics, Vol. 87, 06/01, 2013.
[26]        J. Lu, L. Ma, Numerical analysis of space-time fractional Benjamin-Bona-Mahony equation, Thermal Science, Vol. 27, pp. 1755-1762, 01/01, 2023.
[27]        Y. Wu, J.-H. He, Variational principle for the Kaup-Newell system, Journal of Computational Applied Mechanics, Vol. 54, No. 3, pp. 405-409, 2023.
[28]        X.-Q. Cao, B.-N. Liu, M.-Z. Liu, K.-C. Peng, W.-L. Tian, Variational principles for two kinds of non-linear geophysical KdV equation with fractal derivatives, Thermal Science, Vol. 26, No. 3 Part B, pp. 2505-2515, 2022.
[29]        Q. Ma, R. Yuan, C. Wang, Variational method to fractal long-wave model with variable coefficients, Thermal Science, Vol. 27, No. 3 Part A, pp. 1779-1786, 2023.
[30]        J. Sun, Variational principle for fractal high-order long water-wave equation, Thermal Science, Vol. 27, No. 3 Part A, pp. 1899-1905, 2023.
[31]        A. Bekir, Ö. Güner, A. Bhrawy, A. Biswas, Solving nonlinear fractional differential equations using exp-function and (G/G′) -expansion methods, Romanian Journal of Physics, Vol. 60, 01/01, 2015.
[32]        M. Dehghan, J. Manafian, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 21, pp. 736-753, 08/09, 2011.
[33]        A. Biswas, M. Ekici, A. Sonmezoglu, M. Belić, Highly dispersive optical solitons with cubic–quintic–septic law by extended Jacobi's elliptic function expansion, Optik, Vol. 183, 02/01, 2019.
[34]        S. T. Mohyud‐Din, Y. Khan, N. Faraz, A. Yıldırım, Exp‐function method for solitary and periodic solutions of Fitzhugh‐Nagumo equation, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 22, No. 3, pp. 335-341, 2012.
[35]        Z. Hadas, V. Vetiska, V. Singule, O. Andrs, J. Kovar, J. Vetiska, Energy Harvesting from Mechanical Shocks Using A Sensitive Vibration Energy Harvester Regular Paper, International Journal of Advanced Robotic Systems, Vol. 9, pp. 1, 05/15, 2017.
[36]        M.-U. Noll, L. Lentz, U. von Wagner, On the discretization of a bistable cantilever beam with application to energy harvesting, Facta Universitatis, Series: Mechanical Engineering, Vol. 17, No. 2, pp. 125-139, 2019.
Volume 55, Issue 1
January 2024
Pages 1-7
  • Receive Date: 01 January 2024
  • Revise Date: 01 February 2024
  • Accept Date: 02 February 2024