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Abstract

The tidal wave in the Qiantang River, Hangzhou City, China is quite
different from that of KdV equation, it is a shock-like wave with a finite
amplitude. This phenomenon has mathematicians adjusting their solitary
wave models on how such waves behave. This paper applies the variational
theory to insight into the energy behave of the tidal wave, which can be
modelled by the Benny-Luke equation, and the exp-function method is used
to figure out the solution structure. This paper provides a new window for
designing energy harvesting devices from the shock-like waves.
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1. Introduction

The tidal wave in the Qiantang River, Hangzhou City, China always attracts many sightseers, who might have
been astonished by its fascinating phenomenon, that is the wave walks like a moving cobra ready for an attack,
resulting in two obvious water surfaces with finite height, see Fig.1. The tidal bore propagation can be easily
observed [1], but its properties were rarely studied.

Fig.1 The tidal bore propagation. The photos were taken with a camera near the Xiasha Bridge in Hangzhou, Zhejiang province in 2020.

The tidal wave is quite different from that arising in the well-known KdV equation [2-5], but the interaction of
two waves follows the same soliton theory. The Qiantang River tidal is a shock-like wave with a finite amplitude,
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which can be modelled by the following Benny-Luke equation [6].

u,—u, +au_ —pBu . +uu +2uu, =0 (1)
where u is a potential function, U, is the height of the tidal, & and S are constants.

This equation was extensively studied to reveal the solution properties by various methods, e.g., the modified
simple equation method [7], the modified exp-function method [8], and the G'/G-expansion method [9, 10]. Shock
waves and other types of solitary waves were found in literature [11-13]. This paper will study its energy
conservation by the semi-inverse method [14] and its shock-like wave with a finite amplitude by the exp-function
method [15].

2. Energy conservation of the permanent wave of finite amplitude

A variational principle can elucidate the energy change during the tidal wave travelling, and it is also likely to
suggest the solution’s structure for analytical solutions [16] and boost the reliability of the variational-based
numerical simulation [17]. Due to the merits of the variational theory, the variational formulation has been widely
used to study various engineering problems, for examples, lubrication [18], boundary value problems [19],
nanobeams [20], and singular waves [21]. It is a useful tool to numerical simulation [22-24]. The variational principle
is also extremely useful to study the solution structure of various solitary waves, see for examples, Refs. [25-30].

By the semi-inverse method [14], a variational principle for Eq.(1) can be written in the form

J(u)=jj{—§(ut)2+§(ux)2+§a(uxx>2—§ﬂ(un)z—%ut(uxf}dxdt 2

Its stationary condition is
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where the Lagrange function is expressed as
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It is obvious that
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Eq.(4) becomes
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After a simple calculation, Eq.(6) leads to Eq.(1).
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3. Permanent waves of finite amplitude

In order to figure out the basic wave properties of the Benny-Luke equation, we use the following transform

n=x-—ct @)

where c is the wave travelling velocity. The variational formulation becomes

JO = [{- 5+ 0 + o, -3 A6 ,) 5,

) . (8)
[ 5 D)+ am p, ) 5,
The stationary condition of Eq.(8) is
(© =Du" + (e — fc*)u =3cu'u” =0. 9)
where the prime is the derivative with respect to 77 . Integrating Eq.(9) yields to the following equation
2 ' 2 " 3 12
(c"=Du'+(ax— pc)u —Ecu =0 (10)

In order to search for the solitary solutions, we use the exp-function method [15], and we assume the solution
structure has the following forms:

a,.e” +a,e”’ +a,

= 11

)= e e 1, (D
ae” +a,e”" +a,

12

L= be” +b,e™ +h, (12

u(77):a1e’7+a2e +a, (13)

be® +h,e” +b,
where 8, (i =0,1,2) and b (i = 0,1, 2) are unknown constants to be further solved. The exp-function method is

useful tool in the soliton theory to find various solitary wave solutions, see for examples, Refs. [31-34].
Following the standard solving process of the exp-function method [15], we obtain the following multiple
solutions

a-1 oL
ul(n)_be (,B l)\/_ = Xx= 1t 8u ﬂuxt (14)
Yoy

ab, (- f)a - e
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12b, (o - 4o+1, oL
U =),y Partl g )
(45 -1)(be™ +by) 44-1 ou,
-18b, (o — 9o +1, oL
Us (77) = 0( 2,7,8) 1 =X— t = _IBuxt (18)
(98 -1)(be™ +by) 94-1 duy,
The solutions are illustrated in Fig.2-6 respectively. Fig.2 and Fig.3 have the similar property except the

amplitude. Fig.4 shows singularities and the surface height can be adjusted through the singularities. Fig. 5 and Fig.6
show a sharper change in the surface height than those in Fig.2 and Fig.3.
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Fig.2 Solution Eq.(14) when @, =la=3, ﬂ =2, b2 =1
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Fig.3 Solution Eq.(15) when by =1,b, =1, =3, f=2.

80
60
40

20 20

\ 10
0

0
2 d -10
-20
20
0
40 -30

uix,t)

~
|
u(x)

2 7W 40
10 -60 : . . ;
-10 5 0 5 10-10 Dt -10 5 0 5 10
X

Fig.4 Solution Eq.(16) when & =1la=3 ﬁ =2, bl =1.
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Fig. 6 Solution Eq.(18) when & = 2, # =1, b0 =1, bl =1.

4. Discussion and conclusions

The shock-like waves with finite amplitudes can be used for energy harvesting [35, 36], the shock height and the
velocity are clearly given in the solutions of Eqs.(14)-(18). The results in this paper speeds up optimization of the
energy harvesting devices from shock waves and boosting the operation reliability.

This paper studies the shock-like wave by the variational principle and the exp-function method, the results
shows that the wave is similar to the shock in aerodynamics, and the singularities are also found in the travelling
process. The surface height through a singularity can be greatly affected, this is because that much energy is
accumulated on the singularities, so that the height between two water surface becomes much less than those
without singularities.
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