[1] M. A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of applied physics, Vol. 27, No. 3, pp. 240-253, 1956.
[2] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[3] A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.
[4] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, Journal of elasticity, Vol. 31, No. 3, pp. 189-208, 1993.
[5] J. I. Richard B. Hetnarski, GENERALIZED THERMOELASTICITY, Journal of Thermal Stresses, Vol. 22, No. 4-5, pp. 451-476, 1999/06/01, 1999.
[6] J. Ignaczak, M. Ostoja-Starzewski, 2009, Thermoelasticity with finite wave speeds, OUP Oxford,
[7] I. Abbas, A. Hobiny, M. Marin, Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity, Journal of Taibah University for Science, Vol. 14, No. 1, pp. 1369-1376, 2020.
[8] M. Marin, A. Hobiny, I. Abbas, The Effects of Fractional Time Derivatives in Porothermoelastic Materials Using Finite Element Method, Mathematics, Vol. 9, pp. 1606, 07/07, 2021.
[9] M. Marin, A. Seadawy, S. Vlase, A. Chirila, On mixed problem in thermoelasticity of type III for Cosserat media, Journal of Taibah University for Science, Vol. 16, No. 1, pp. 1264-1274, 2022.
[10] L. Codarcea-Munteanu, M. Marin, S. Vlase, The study of vibrations in the context of porous micropolar media thermoelasticity and the absence of energy dissipation, 1402.
[11] M. Luminita Scutaru, S. Vlase, M. Marin, Symmetrical Mechanical System Properties-Based Forced Vibration Analysis, 1402.
[12] S. Vlase, M. Marin, A. Elkhalfi, P. Ailawalia, Mathematical model for dynamic analysis of internal combustion engines, Journal of Computational Applied Mechanics, Vol. 54, No. 4, pp. 607-622, 2023.
[13] M. Koizumi, FGM activities in Japan, Composites Part B: Engineering, Vol. 28, No. 1, pp. 1-4, 1997/01/01/, 1997.
[14] T.-K. Nguyen, K. Sab, G. Bonnet, First-order shear deformation plate models for functionally graded materials, Composite Structures - COMPOS STRUCT, Vol. 83, pp. 25-36, 03/01, 2008.
[15] Y. Khalfi, M. S. A. Houari, A. Tounsi, A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation, International Journal of Computational Methods, Vol. 11, pp. 1350077, 10/01, 2014.
[16] J. Reddy, C. Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of thermal Stresses, Vol. 21, No. 6, pp. 593-626, 1998.
[17] B. Sankar, J. Tzeng, Thermal Stresses in Functionally Graded Beams, Aiaa Journal - AIAA J, Vol. 40, pp. 1228-1232, 06/01, 2002.
[18] S. Mallik, M. Kanoria, Generalized thermoelastic functionally graded solid with a periodically varying heat source, International Journal of Solids and Structures, Vol. 44, pp. 7633-7645, 11/01, 2007.
[19] I. Abbas, A. Zenkour, LS model on electro–magneto–thermoelastic response of an infinite functionally graded cylinder, Composite Structures, Vol. 96, pp. 89–96, 02/01, 2013.
[20] A. Gunghas, R. Kumar, S. Deswal, K. Kalkal, Influence of Rotation and Magnetic Fields on a Functionally Graded Thermoelastic Solid Subjected to a Mechanical Load, Journal of Mathematics, Vol. 2019, 06/10, 2019.
[21] K. Kalkal, A. Gunghas, S. Deswal, Two-dimensional magneto-thermoelastic interactions in a micropolar functionally graded solid, Mechanics Based Design of Structures and Machines, Vol. 48, pp. 1-22, 08/20, 2019.
[22] M. Barak, P. Dhankhar, Effect of inclined load on a functionally graded fiber-reinforced thermoelastic medium with temperature-dependent properties, Acta Mechanica, Vol. 233, No. 9, pp. 3645-3662, 2022.
[23] S. K. Sheokand, K. K. Kalkal, S. Deswal, Thermoelastic interactions in a functionally graded material with gravity and rotation under dual-phase-lag heat conduction, Mechanics Based Design of Structures and Machines, Vol. 51, No. 6, pp. 3026-3045, 2023.
[24] J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, Long‐transient effects in lasers with inserted liquid samples, Journal of Applied Physics, Vol. 36, No. 1, pp. 3-8, 1965.
[25] D. Kliger, 2012, Ultrasensitive laser spectroscopy, Elsevier,
[26] A. C. Tam, Applications of photoacoustic sensing techniques, Reviews of Modern Physics, Vol. 58, No. 2, pp. 381-431, 04/01/, 1986.
[27] D. M. Todorović, P. M. Nikolić, A. I. Bojičić, Photoacoustic frequency transmission technique: Electronic deformation mechanism in semiconductors, Journal of Applied Physics, Vol. 85, No. 11, pp. 7716-7726, 1999.
[28] Y. Song, D. Todorovic, B. Cretin, P. Vairac, Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers, International Journal of Solids and Structures, Vol. 47, pp. 1871-1875, 07/01, 2010.
[29] Y. Song, J. Bai, Z. Ren, Reflection of Plane Waves in a Semiconducting Medium under Photothermal Theory, International Journal of Thermophysics, Vol. 33, 07/01, 2012.
[30] A. Mandelis, M. Nestoros, C. Christofides, Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures, Optical Engineering, Vol. 36, No. 2, pp. 459-468, 1997.
[31] D. M. Todorovic, Plasma, thermal, and elastic waves in semiconductors, Review of Scientific Instruments, Vol. 74, pp. 582-585, 02/01, 2003.
[32] M. Othman, R. Tantawi, E. Eraki, Effect of initial stress on a semiconductor material with temperature dependent properties under DPL model, Microsystem Technologies, Vol. 23, 12/01, 2017.
[33] K. Lotfy, The elastic wave motions for a Photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field, Canadian Journal of Physics, Vol. 94, 02/09, 2016.
[34] M. I. Othman, M. Fekry, M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech, Vol. 73, No. 6, pp. 621-629, 2020.
[35] M. Othman, R. Tantawi, E. Eraki, Effect of the gravity on the photothermal waves in a semiconducting medium with an internal heat source and one relaxation time, Waves in Random and Complex Media, Vol. 27, pp. 1-21, 03/27, 2017.
[36] K. Lotfy, N. Sarkar, Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature, Mechanics of Time-Dependent Materials, Vol. 21, 11/01, 2017.
[37] K. Lotfy, Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress, Waves in Random and Complex media, Vol. 27, No. 3, pp. 482-501, 2017.
[38] A. Hobiny, I. Abbas, Fractional Order GN Model on Photo-Thermal Interaction in a Semiconductor Plane, Silicon, Vol. 12, 08/01, 2020.
[39] K. Lotfy, A. El-Bary, W. Hassan, M. Ahmed, Hall current influence of microtemperature magneto-elastic semiconductor material, Superlattices and Microstructures, Vol. 139, pp. 106428, 2020.
[40] P. Ailawalia, A. Kumar, Ramp Type Heating in a Semiconductor Medium under Photothermal Theory, Silicon, Vol. 12, No. 2, pp. 347-356, 2020/02/01, 2020.
[41] K. Lotfy, A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress, Waves in Random and Complex Media, Vol. 31, pp. 1-18, 01/17, 2019.
[42] A. K. Khamis, K. Lotfy, A. El-Bary, Effect of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type, Waves in Random and Complex Media, Vol. 32, No. 1, pp. 78-90, 2022.
[43] A. K. Khamis, A. El-Bary, K. Lotfy, Electromagnetic Hall current and variable thermal conductivity influence for microtemperature photothermal excitation process of semiconductor material, Waves in Random and Complex Media, Vol. 32, No. 1, pp. 406-423, 2022.
[44] K. Lotfy, Microtemperature photothermal excitation of semiconductor material influenced by electromagnetic Hall current and variable thermal conductivity, Waves in Random and Complex Media, pp. 1-18, 2023.