[1] B. Godin, J. H. Sakamoto, R. E. Serda, A. Grattoni, A. Bouamrani, M. Ferrari, Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases, Trends in pharmacological sciences, Vol. 31, No. 5, pp. 199-205, 2010.
[2] V. Sridhara, B. Gowrishankar, Snehalatha, L. Satapathy, Nanofluids—a new promising fluid for cooling, Transactions of the Indian Ceramic Society, Vol. 68, No. 1, pp. 1-17, 2009.
[3] C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery, International Journal of Heat and Mass Transfer, Vol. 51, No. 23-24, pp. 5590-5597, 2008.
[4] J.-F. Yan, J. Liu, Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues, Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 4, No. 1, pp. 79-87, 2008.
[5] W. Alghamdi, A. Alsubie, P. Kumam, A. Saeed, T. Gul, MHD hybrid nanofluid flow comprising the medication through a blood artery, Scientific Reports, Vol. 11, No. 1, pp. 1-13, 2021.
[6] P. Hassanpour, Y. Panahi, A. Ebrahimi‐Kalan, A. Akbarzadeh, S. Davaran, A. N. Nasibova, R. Khalilov, T. Kavetskyy, Biomedical applications of aluminium oxide nanoparticles, Micro & Nano Letters, Vol. 13, No. 9, pp. 1227-1231, 2018.
[7] S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab.(ANL), Argonne, IL (United States), pp. 1995.
[8] S. A. Devi, S. S. U. Devi, Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 17, No. 5, pp. 249-257, 2016.
[9] T. Hayat, R. S. Saif, R. Ellahi, T. Muhammad, B. Ahmad, Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions, Results in physics, Vol. 7, pp. 2886-2892, 2017.
[10] N. V. Ganesh, A. A. Hakeem, B. Ganga, Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Engineering Journal, Vol. 9, No. 4, pp. 939-951, 2018.
[11] S. Sahu, D. Thatoi, K. Swain, Darcy-Forchheimer Flow Over a Stretching Sheet with Heat Source Effect: A Numerical Study, in: Recent Advances in Mechanical Engineering, Eds., pp. 615-622: Springer, 2023.
[12] R. Biswas, M. S. Hossain, R. Islam, S. F. Ahmmed, S. Mishra, M. Afikuzzaman, Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation, Journal of Computational Mathematics and Data Science, Vol. 4, pp. 100048, 2022.
[13] K. Swain, F. Mebarek-Oudina, S. Abo-Dahab, Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions, Journal of Thermal Analysis and Calorimetry, Vol. 147, No. 2, pp. 1561-1570, 2022.
[14] I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition, in Proceeding of, IOP Publishing, pp. 012022.
[15] L. A. Lund, Z. Omar, I. Khan, E.-S. M. Sherif, Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow, Symmetry, Vol. 12, No. 2, pp. 276, 2020.
[16] T. Thumma, N. A. Ahammad, K. Swain, I. L. Animasauan, S. Mishra, Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant, Waves in Random and Complex Media, pp. 1-18, 2022.
[17] N. S. Khashi'ie, N. M. Arifin, I. Pop, Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating, Alexandria Engineering Journal, Vol. 61, No. 3, pp. 1938-1945, 2022.
[18] S. Ahmad, K. Ali, M. Rizwan, M. Ashraf, Heat and mass transfer attributes of copper–aluminum oxide hybrid nanoparticles flow through a porous medium, Case Studies in Thermal Engineering, Vol. 25, pp. 100932, 2021.
[19] M. M. Biswal, K. Swain, G. C. Dash, K. Ojha, Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects, Numerical Heat Transfer, Part A: Applications, pp. 1-12, 2022.
[20] M. Basavarajappa, T. Muhammad, G. Lorenzini, K. Swain, Darcy–Forchheimer Nanoliquid Flow and Radiative Heat Transport over Convectively Heated Surface with Chemical Reaction, Journal of Engineering Thermophysics, Vol. 31, No. 2, pp. 261-273, 2022.
[21] M. M. Biswal, K. Swain, G. C. Dash, S. Mishra, Study of chemically reactive and thermally radiative Casson nanofluid flow past a stretching sheet with a heat source, Heat Transfer.
[22] K. Swain, M. Mishra, A. Kumari, Numerical study of Casson nanofluid over an elongated surface in presence of Joule heating and viscous dissipation: Buongiorno model analysis, Journal of Computational Applied Mechanics, Vol. 53, No. 3, pp. 414-430, 2022.
[23] W. Al‐Kouz, K. Swain, B. Mahanthesh, W. Jamshed, Significance of exponential space‐based heat source and inclined magnetic field on heat transfer of hybrid nanoliquid with homogeneous–heterogeneous chemical reactions, Heat Transfer, Vol. 50, No. 4, pp. 4086-4102, 2021.
[24] S. Mishra, R. Dalai, K. Swain, Effects of copper and titania nanoparticles on MHD 3D rotational flow over an elongating sheet with convective thermal boundary condition, International Journal of Ambient Energy, pp. 1-9, 2022.
[25] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[26] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[27] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[28] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[29] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[30] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[31] A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[32] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[33] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[34] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[35] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[36] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[37] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[39] M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in
Proceeding of, https://civilica.com/doc/540946/, pp.
[41] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[42] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[43] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[44] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[45] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[46] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[47] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[48] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[49] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[50] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[51] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[52] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[53] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[54] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[55] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[56] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[57] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[58] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[59] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[60] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[62] M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[63] M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[64] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[65] N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[66] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam,
Acta Mechanica,
https://doi.org/10.1007/s00707-022-03430-0, 2023.
[67] I. Gherasim, G. Roy, C. T. Nguyen, D. Vo-Ngoc, Experimental investigation of nanofluids in confined laminar radial flows, International Journal of Thermal Sciences, Vol. 48, No. 8, pp. 1486-1493, 2009.
[68] H. A. Mintsa, G. Roy, C. T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, International journal of thermal sciences, Vol. 48, No. 2, pp. 363-371, 2009.
[69] B. Sahoo, Y. Do, Effects of slip on sheet-driven flow and heat transfer of a third grade fluid past a stretching sheet, International Communications in Heat and Mass Transfer, Vol. 37, No. 8, pp. 1064-1071, 2010.
[70] A. Tulu, W. Ibrahim, Effects of second-order slip flow and variable viscosity on natural convection flow of/water hybrid nanofluids due to stretching surface, Mathematical Problems in Engineering, Vol. 2021, 2021.