Therapeutic applications of Darcy-Forchheimer hybrid nanofluid flow and mass transfer over a stretching sheet

Document Type : Research Paper

Authors

1 Department of Chemistry, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751030, India

2 Department of Mathematics, Gandhi Institute For Technology, Bhubaneswar-752054, India

Abstract

The purpose of the current study is to investigate the therapeutic applications of Darcy-Forchheimer flow and mass transfer of hybrid nanofluid (HNF) over a stretching sheet by the influence of magnetic field and chemical reaction. The HNF is the conglomeration of two types of NPs (NPs) copper (metal) and alumina (metallic oxide) with water as regular fluid. Copper NPs act as an anti-biotic, anti-microbial, and anti-fungal agent whereas alumina NPs has wide range of biomedical applications including cancer therapy, biosensing, and immunotherapy etc. Thus, the present model is useful because it may be used to a variety of fields, including biomedicine, microelectronics, biology, and industrial production processes. By introducing the similarity transformations, the governing partial differential equations (PDEs) are transformed into a set of nonlinear ordinary differential equations (ODEs) and then solved numerically with MATLAB bvp4c code by varying numerous operating physical parameters. It is found that higher values of magnetic, Forchheimer and slip parameters decrease the velocity profiles. Slip parameter and chemical reaction parameter has opposite effect on concentration profile. Volume fractions of NPs and slip parameter have opposite effects on skin friction coefficient and Sherwood number.

Keywords

Main Subjects

[1]          B. Godin, J. H. Sakamoto, R. E. Serda, A. Grattoni, A. Bouamrani, M. Ferrari, Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases, Trends in pharmacological sciences, Vol. 31, No. 5, pp. 199-205, 2010.
[2]          V. Sridhara, B. Gowrishankar, Snehalatha, L. Satapathy, Nanofluids—a new promising fluid for cooling, Transactions of the Indian Ceramic Society, Vol. 68, No. 1, pp. 1-17, 2009.
[3]          C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery, International Journal of Heat and Mass Transfer, Vol. 51, No. 23-24, pp. 5590-5597, 2008.
[4]          J.-F. Yan, J. Liu, Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues, Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 4, No. 1, pp. 79-87, 2008.
[5]          W. Alghamdi, A. Alsubie, P. Kumam, A. Saeed, T. Gul, MHD hybrid nanofluid flow comprising the medication through a blood artery, Scientific Reports, Vol. 11, No. 1, pp. 1-13, 2021.
[6]          P. Hassanpour, Y. Panahi, A. Ebrahimi‐Kalan, A. Akbarzadeh, S. Davaran, A. N. Nasibova, R. Khalilov, T. Kavetskyy, Biomedical applications of aluminium oxide nanoparticles, Micro & Nano Letters, Vol. 13, No. 9, pp. 1227-1231, 2018.
[7]          S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab.(ANL), Argonne, IL (United States),  pp. 1995.
[8]          S. A. Devi, S. S. U. Devi, Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 17, No. 5, pp. 249-257, 2016.
[9]          T. Hayat, R. S. Saif, R. Ellahi, T. Muhammad, B. Ahmad, Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions, Results in physics, Vol. 7, pp. 2886-2892, 2017.
[10]        N. V. Ganesh, A. A. Hakeem, B. Ganga, Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Engineering Journal, Vol. 9, No. 4, pp. 939-951, 2018.
[11]        S. Sahu, D. Thatoi, K. Swain, Darcy-Forchheimer Flow Over a Stretching Sheet with Heat Source Effect: A Numerical Study,  in: Recent Advances in Mechanical Engineering, Eds., pp. 615-622: Springer, 2023.
[12]        R. Biswas, M. S. Hossain, R. Islam, S. F. Ahmmed, S. Mishra, M. Afikuzzaman, Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation, Journal of Computational Mathematics and Data Science, Vol. 4, pp. 100048, 2022.
[13]        K. Swain, F. Mebarek-Oudina, S. Abo-Dahab, Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions, Journal of Thermal Analysis and Calorimetry, Vol. 147, No. 2, pp. 1561-1570, 2022.
[14]        I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition, in Proceeding of, IOP Publishing, pp. 012022.
[15]        L. A. Lund, Z. Omar, I. Khan, E.-S. M. Sherif, Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow, Symmetry, Vol. 12, No. 2, pp. 276, 2020.
[16]        T. Thumma, N. A. Ahammad, K. Swain, I. L. Animasauan, S. Mishra, Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant, Waves in Random and Complex Media, pp. 1-18, 2022.
[17]        N. S. Khashi'ie, N. M. Arifin, I. Pop, Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating, Alexandria Engineering Journal, Vol. 61, No. 3, pp. 1938-1945, 2022.
[18]        S. Ahmad, K. Ali, M. Rizwan, M. Ashraf, Heat and mass transfer attributes of copper–aluminum oxide hybrid nanoparticles flow through a porous medium, Case Studies in Thermal Engineering, Vol. 25, pp. 100932, 2021.
[19]        M. M. Biswal, K. Swain, G. C. Dash, K. Ojha, Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects, Numerical Heat Transfer, Part A: Applications, pp. 1-12, 2022.
[20]        M. Basavarajappa, T. Muhammad, G. Lorenzini, K. Swain, Darcy–Forchheimer Nanoliquid Flow and Radiative Heat Transport over Convectively Heated Surface with Chemical Reaction, Journal of Engineering Thermophysics, Vol. 31, No. 2, pp. 261-273, 2022.
[21]        M. M. Biswal, K. Swain, G. C. Dash, S. Mishra, Study of chemically reactive and thermally radiative Casson nanofluid flow past a stretching sheet with a heat source, Heat Transfer.
[22]        K. Swain, M. Mishra, A. Kumari, Numerical study of Casson nanofluid over an elongated surface in presence of Joule heating and viscous dissipation: Buongiorno model analysis, Journal of Computational Applied Mechanics, Vol. 53, No. 3, pp. 414-430, 2022.
[23]        W. Al‐Kouz, K. Swain, B. Mahanthesh, W. Jamshed, Significance of exponential space‐based heat source and inclined magnetic field on heat transfer of hybrid nanoliquid with homogeneous–heterogeneous chemical reactions, Heat Transfer, Vol. 50, No. 4, pp. 4086-4102, 2021.
[24]        S. Mishra, R. Dalai, K. Swain, Effects of copper and titania nanoparticles on MHD 3D rotational flow over an elongating sheet with convective thermal boundary condition, International Journal of Ambient Energy, pp. 1-9, 2022.
[25]        M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[26]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[27]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[28]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[29]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[30]        A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[31]        A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[32]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[33]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[34]        M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[35]        M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[36]        H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[37]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[38]        M. Goodarzi, M. Mohammadi, A. Gharib, Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran, in Proceeding of, https://publications.waset.org/abstracts/33008/techno-economic-analysis-of …, pp.
[39]        M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in Proceeding of, https://civilica.com/doc/540946/, pp.
[40]        M. Goodarzi, M. Mohammadi, M. Rezaee, Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran, in Proceeding of, https://publications.waset.org/abstracts/18930/technical-feasibility …, pp.
[41]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[42]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[43]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[44]        M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[45]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[46]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[47]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[48]        S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[49]        S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[50]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[51]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[52]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[53]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[54]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[55]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[56]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[57]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[58]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[59]        H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[60]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[61]        A. Farajpour, M. Mohammadi, M. Ghayour, Shear buckling of rectangular nanoplates embedded in elastic medium based on nonlocal elasticity theory, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_390.html, pp. 390.
[62]        M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[63]        M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[64]        M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[65]        N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[66]        M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam, Acta Mechanica, https://doi.org/10.1007/s00707-022-03430-0, 2023.
[67]        I. Gherasim, G. Roy, C. T. Nguyen, D. Vo-Ngoc, Experimental investigation of nanofluids in confined laminar radial flows, International Journal of Thermal Sciences, Vol. 48, No. 8, pp. 1486-1493, 2009.
[68]        H. A. Mintsa, G. Roy, C. T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, International journal of thermal sciences, Vol. 48, No. 2, pp. 363-371, 2009.
[69]        B. Sahoo, Y. Do, Effects of slip on sheet-driven flow and heat transfer of a third grade fluid past a stretching sheet, International Communications in Heat and Mass Transfer, Vol. 37, No. 8, pp. 1064-1071, 2010.
[70]        A. Tulu, W. Ibrahim, Effects of second-order slip flow and variable viscosity on natural convection flow of/water hybrid nanofluids due to stretching surface, Mathematical Problems in Engineering, Vol. 2021, 2021.
Volume 53, Issue 4
December 2022
Pages 585-598
  • Receive Date: 11 October 2022
  • Revise Date: 27 October 2022
  • Accept Date: 27 October 2022