[1] D. C. Jolly, J. R. Melcher, Electroconvective instability in a fluid layer, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 314, No. 1517, pp. 269-283, 1970.
[2] M. Takashima, The effect of rotation on electrohydrodynamic instability, Canadian Journal of Physics, Vol. 54, No. 3, pp. 342-347, 1976.
[3] R. BRADLEY, Overstable electroconvective instabilities, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 31, No. 3, pp. 381-390, 1978.
[4] M. Takashima, A. K. Ghosh, Electrohydrodynamic instability in a viscoelastic liquid layer, Journal of the Physical Society of Japan, Vol. 47, No. 5, pp. 1717-1722, 1979.
[5] A. Castellanos, P. Atten, M. Velarde, Oscillatory and steady convection in dielectric liquid layers subjected to unipolar injection and temperature gradient, The Physics of fluids, Vol. 27, No. 7, pp. 1607-1615, 1984.
[6] M. Takashima, The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of a transverse magnetic field, Fluid dynamics research, Vol. 14, No. 3, pp. 121, 1994.
[7] J.-S. Chang, A. Watson, Electromagnetic hydrodynamics, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, No. 5, pp. 871-895, 1994.
[8] J. Wu, P. Traore, C. Louste, L. Dascalescu, F.-B. Tian, A. T. Perez, Effect of the mobility parameter on the oscillatory electroconvection of dielectric liquids subject to strong unipolar charge injection, IEEE Transactions on Industry Applications, Vol. 50, No. 4, pp. 2306-2313, 2014.
[9] S. Maruthamanikandan, S. Smita, Convective heat transfer in Maxwell-Cattaneo dielectric fluids, Int. J. Comp. Engg. Res., Vol. 3, pp. 347-355, 2013.
[10] S. S. Nagouda, S. Maruthamanikandan, Rayleigh-bénard convection in a horizontal layer of porous medium saturated with a thermally radiating dielectric fluid, International Journal of Computational Engineering Research, Vol. 11, No. 3, pp. 1-10, 2015.
[11] Z. Lu, G. Liu, B. Wang, Flow structure and heat transfer of electro-thermo-convection in a dielectric liquid layer, Physics of Fluids, Vol. 31, No. 6, pp. 064103, 2019.
[12] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[13] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[14] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[15] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[16] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[17] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[18] A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[19] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[20] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[21] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[22] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[23] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[24] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[26] M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in
Proceeding of, https://civilica.com/doc/540946/, pp.
[28] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[29] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[30] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[31] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[32] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[33] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[34] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[35] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[36] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[37] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[38] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[39] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[40] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[41] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[42] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[43] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[44] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[45] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[46] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[47] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[49] M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[50] M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[51] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[52] N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[53] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam,
Acta Mechanica,
https://doi.org/10.1007/s00707-022-03430-0, 2023.
[54] R. Wooding, Large-scale geothermal field parameters and convection theory, Applied Mathematics Division, DSIR, Wellington, New Zealand, pp. 1976.
[55] J. Epherre, CRITERE D'APPARITION DE LA CONVECTION NATURELLE DANS UNE COUCHE POREUSE ANISOTROPE, 1975.
[56] S. M. Alex, P. R. Patil, Effect of a variable gravity field on convection in an anisotropic porous medium with internal heat source and inclined temperature gradient, J. Heat Transfer, Vol. 124, No. 1, pp. 144-150, 2002.
[57] M. Malashetty, D. Basavaraja, Rayleigh–Benard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium, Heat and mass transfer, Vol. 38, No. 7, pp. 551-563, 2002.
[58] M. Malashetty, B. S. Biradar, The onset of double diffusive reaction-convection in an anisotropic porous layer, Physics of Fluids, Vol. 23, No. 6, pp. 064102, 2011.
[59] N. M. Thomas, S. Maruthamanikandan, Effect of gravity modulation on the onset of ferroconvection in a densely packed porous layer, IOSR J Appl Phys, Vol. 3, pp. 30-40, 2013.
[60] N. A. M. Shamsudin, N. F. M. Mokhtar, Onset of Convection in a Dielectric Nanofluid Saturated Anisotropic Porous Medium.
[61] M. Takashima, H. Hamabata, The stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal ac electric field, Journal of the Physical Society of Japan, Vol. 53, No. 5, pp. 1728-1736, 1984.
[62] V. Semenov, Parametric instability of a nonuniformly heated horizontal layer of liquid dielectric in a variable electric field, Fluid dynamics, Vol. 28, No. 5, pp. 734-735, 1993.
[63] M. Velarde, B. Smorodin, Convective instability of a plane horizontal layer of weakly conducting fluid in alternating and modulated electric fields, Fluid dynamics, Vol. 35, No. 3, pp. 339-345, 2000.
[64] C. Rudresha, C. Balaji, V. V. Shree, S. Maruthamanikandan, Effect of Electric Field Modulation on Electroconvection in a Dielectric Fluid-Saturated Porous Medium, Journal of Mines, Metals and Fuels, pp. 35-41, 2022.
[65] C. Rudresha, C. Balaji, V. V. Shree, S. Maruthamanikandan, Effect of Electric Field Modulation on The Onset of Electroconvection in a Couple Stress Fluid, East European Journal of Physics, No. 4, pp. 104-111, 2022.