Effect of Electric field Modulation on the Onset of Electroconvection in a Dielectric Fluid Anisotropic Porous Layer

Document Type : Research Paper

Authors

Department of Mathematics, School of Engineering, Presidency University, Bengaluru 560064, India

Abstract

The method of small perturbation coupled with the regular perturbation method is employed to investigate the effect of time-periodic electric field modulation on electroconvection in a densely packed anisotropic porous layer saturated with a Boussinesq dielectric fluid. The Darcy model is adopted to describe the fluid motion and the dielectric constant is assumed to be a linear function of temperature. The regular perturbation method is used to determine the critical correction Rayleigh number for small amplitude electric field modulation. It is shown that electric field modulation frequency, electrical, porosity, and anisotropic parameters are related to the shift in the critical Rayleigh number and that subcritical convective motion is possible for low frequency modulation of the electric field. The classical destabilizing effect of the dielectrophoretic force associated with the unmodulated, anisotropic dielectric fluid porous layer is only realized for low frequency modulation of the electric field. Furthermore, it is substantiated that anisotropic parameters greatly influence the stability criterion for moderate and large values of the frequency of electric field modulation. The study reveals that time-varying electric fields and anisotropic characteristics of the fluid layer may have implications for the control of electroconvection in heat transfer applications involving dielectric fluid as working media.

Keywords

Main Subjects

[1]          D. C. Jolly, J. R. Melcher, Electroconvective instability in a fluid layer, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 314, No. 1517, pp. 269-283, 1970.
[2]          M. Takashima, The effect of rotation on electrohydrodynamic instability, Canadian Journal of Physics, Vol. 54, No. 3, pp. 342-347, 1976.
[3]          R. BRADLEY, Overstable electroconvective instabilities, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 31, No. 3, pp. 381-390, 1978.
[4]          M. Takashima, A. K. Ghosh, Electrohydrodynamic instability in a viscoelastic liquid layer, Journal of the Physical Society of Japan, Vol. 47, No. 5, pp. 1717-1722, 1979.
[5]          A. Castellanos, P. Atten, M. Velarde, Oscillatory and steady convection in dielectric liquid layers subjected to unipolar injection and temperature gradient, The Physics of fluids, Vol. 27, No. 7, pp. 1607-1615, 1984.
[6]          M. Takashima, The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of a transverse magnetic field, Fluid dynamics research, Vol. 14, No. 3, pp. 121, 1994.
[7]          J.-S. Chang, A. Watson, Electromagnetic hydrodynamics, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, No. 5, pp. 871-895, 1994.
[8]          J. Wu, P. Traore, C. Louste, L. Dascalescu, F.-B. Tian, A. T. Perez, Effect of the mobility parameter on the oscillatory electroconvection of dielectric liquids subject to strong unipolar charge injection, IEEE Transactions on Industry Applications, Vol. 50, No. 4, pp. 2306-2313, 2014.
[9]          S. Maruthamanikandan, S. Smita, Convective heat transfer in Maxwell-Cattaneo dielectric fluids, Int. J. Comp. Engg. Res., Vol. 3, pp. 347-355, 2013.
[10]        S. S. Nagouda, S. Maruthamanikandan, Rayleigh-bénard convection in a horizontal layer of porous medium saturated with a thermally radiating dielectric fluid, International Journal of Computational Engineering Research, Vol. 11, No. 3, pp. 1-10, 2015.
[11]        Z. Lu, G. Liu, B. Wang, Flow structure and heat transfer of electro-thermo-convection in a dielectric liquid layer, Physics of Fluids, Vol. 31, No. 6, pp. 064103, 2019.
[12]        M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[13]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[14]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[15]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[16]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[17]        A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[18]        A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[19]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[20]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[21]        M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[22]        M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[23]        H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[24]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[25]        M. Goodarzi, M. Mohammadi, A. Gharib, Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran, in Proceeding of, https://publications.waset.org/abstracts/33008/techno-economic-analysis-of …, pp.
[26]        M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in Proceeding of, https://civilica.com/doc/540946/, pp.
[27]        M. Goodarzi, M. Mohammadi, M. Rezaee, Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran, in Proceeding of, https://publications.waset.org/abstracts/18930/technical-feasibility …, pp.
[28]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[29]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[30]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[31]        M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[32]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[33]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[34]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[35]        S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[36]        S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[37]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[38]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[39]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[40]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[41]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[42]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[43]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[44]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[45]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[46]        H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[47]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[48]        A. Farajpour, M. Mohammadi, M. Ghayour, Shear buckling of rectangular nanoplates embedded in elastic medium based on nonlocal elasticity theory, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_390.html, pp. 390.
[49]        M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[50]        M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[51]        M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[52]        N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[53]        M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam, Acta Mechanica, https://doi.org/10.1007/s00707-022-03430-0, 2023.
[54]        R. Wooding, Large-scale geothermal field parameters and convection theory, Applied Mathematics Division, DSIR, Wellington, New Zealand,  pp. 1976.
[55]        J. Epherre, CRITERE D'APPARITION DE LA CONVECTION NATURELLE DANS UNE COUCHE POREUSE ANISOTROPE, 1975.
[56]        S. M. Alex, P. R. Patil, Effect of a variable gravity field on convection in an anisotropic porous medium with internal heat source and inclined temperature gradient, J. Heat Transfer, Vol. 124, No. 1, pp. 144-150, 2002.
[57]        M. Malashetty, D. Basavaraja, Rayleigh–Benard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium, Heat and mass transfer, Vol. 38, No. 7, pp. 551-563, 2002.
[58]        M. Malashetty, B. S. Biradar, The onset of double diffusive reaction-convection in an anisotropic porous layer, Physics of Fluids, Vol. 23, No. 6, pp. 064102, 2011.
[59]        N. M. Thomas, S. Maruthamanikandan, Effect of gravity modulation on the onset of ferroconvection in a densely packed porous layer, IOSR J Appl Phys, Vol. 3, pp. 30-40, 2013.
[60]        N. A. M. Shamsudin, N. F. M. Mokhtar, Onset of Convection in a Dielectric Nanofluid Saturated Anisotropic Porous Medium.
[61]        M. Takashima, H. Hamabata, The stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal ac electric field, Journal of the Physical Society of Japan, Vol. 53, No. 5, pp. 1728-1736, 1984.
[62]        V. Semenov, Parametric instability of a nonuniformly heated horizontal layer of liquid dielectric in a variable electric field, Fluid dynamics, Vol. 28, No. 5, pp. 734-735, 1993.
[63]        M. Velarde, B. Smorodin, Convective instability of a plane horizontal layer of weakly conducting fluid in alternating and modulated electric fields, Fluid dynamics, Vol. 35, No. 3, pp. 339-345, 2000.
[64]        C. Rudresha, C. Balaji, V. V. Shree, S. Maruthamanikandan, Effect of Electric Field Modulation on Electroconvection in a Dielectric Fluid-Saturated Porous Medium, Journal of Mines, Metals and Fuels, pp. 35-41, 2022.
[65]        C. Rudresha, C. Balaji, V. V. Shree, S. Maruthamanikandan, Effect of Electric Field Modulation on The Onset of Electroconvection in a Couple Stress Fluid, East European Journal of Physics, No. 4, pp. 104-111, 2022.
Volume 53, Issue 4
December 2022
Pages 510-523
  • Receive Date: 04 September 2022
  • Revise Date: 03 October 2022
  • Accept Date: 03 October 2022