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Abstract 

The method of small perturbation coupled with the regular perturbation method is 

employed to investigate the effect of time-periodic electric field modulation on 

electroconvection in a densely packed anisotropic porous layer saturated with a 

Boussinesq dielectric fluid. The Darcy model is adopted to describe the fluid 

motion and the dielectric constant is assumed to be a linear function of 

temperature. The regular perturbation method is used to determine the critical 

correction Rayleigh number for small amplitude electric field modulation. It is 

shown that electric field modulation frequency, electrical, porosity, and 

anisotropic parameters are related to the shift in the critical Rayleigh number and 

that subcritical convective motion is possible for low frequency modulation of the 

electric field. The classical destabilizing effect of the dielectrophoretic force 

associated with the unmodulated, anisotropic dielectric fluid porous layer is only 

realized for low frequency modulation of the electric field. Furthermore, it is 

substantiated that anisotropic parameters greatly influence the stability criterion 

for moderate and large values of the frequency of electric field modulation. The 

study reveals that time-varying electric fields and anisotropic characteristics of 

the fluid layer may have implications for the control of electroconvection in heat 

transfer applications involving dielectric fluid as working media.  
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1. Introduction 

 

      As for dielectric fluids, temperature gradients cause dielectric constant and electrical conductivity to vary. Free 

charge is accumulated in the fluid when a dc electric field is applied. The rate of accumulation increases 

exponentially during the accumulation of constant free charges. This constant is called the electrical relaxation time. 

The free charge has no time to build up when an electric field of alternating current is applied at a frequency that is 

substantially higher than the reciprocal of the electrical relaxation time. At typical power line frequencies, free 

charge effects appear to be insignificant for the majority of dielectric fluids due to their lengthy electrical relaxation 

durations. Dielectric loss is also so negligible at these frequencies that it has no impact on the temperature field. 

Furthermore, because body force changes so quickly, the mean value can be taken as the effective value for 

calculating fluid motions, with the exception of fluids having extremely low viscosities [1-4].   

 

Castellanos et al. [5] examined the impact of altering the dielectric constant and ionic mobility at various 

temperatures on the stability of a horizontal dielectric liquid layer subjected to an electric field and heating from 

below. The stability of natural convection of an electrically conducting fluid between two parallel vertical plates 

kept at constant and different temperatures and permeated by a transverse magnetic field was investigated by 
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Takashima [6] using the linear stability theory. Chang and Watson [7] explored the impact of electroconvection on 

heat transfer, and numerous scholars [8-10] have looked at some related experimental and theoretical studies. 

Zhiming et al. [11] performed a numerical analysis of the dielectric fluid flow in an EHD under the influence of 

gravitational and Coulomb forces. Periodic forcing on liquids can take the form of vibrations, variations in surface 

temperature or heat flux, or alternating electric fields. With a wide range of scientific applications, time-dependent 

forces acting on a fluid can significantly alter instability thresholds and offer a reliable method of controlling 

convection [12-53]. 

 

A few geophysical and technological issues where thermally driven convection in porous media is significant 

include the modelling of geothermal reservoirs and thermal insulation systems, packed-bed catalytic reactors, and 

heat storage devices. Researchers have explored porous media flows' theory and modelling for quite a long time and 

isotropic porous media has been the primary subject of theoretical and experimental investigations. However, in 

many practical situations, the mechanical and thermal properties of the porous matrix are anisotropic. A good 

example of such a medium is loft insulation, which typically has a lower permeability across the insulating layer 

than it does in the perpendicular direction. According to Wooding [54], in geothermal systems, horizontal 

permeability might be up to ten times greater than vertical permeability in some circumstances. 

 

Since the 1970s, researchers have focused primarily on the porous medium equivalent of the Bénard problem, 

also known as the Lapwood problem, in their studies of natural convection in anisotropic porous media. Castinel and 

Combamous [55] made the discovery of the criterion for the commencement of convection in an anisotropic layer. 

Additionally, they revealed experimental findings that mostly corroborated their theoretical forecasts. By including 

anisotropy in the thermal diffusivity, Alex and Patil [56] extended the stability investigation. It has been established 

that the marginal stability criterion and the required width of the convection cells are both influenced by anisotropy 

in the mechanical and thermal properties. Malashetty and Basavaraja [57] provided evidence for the interaction 

between the anisotropy of the porous medium, time-dependent wall temperature, and gravity modulation on the 

onset of convection. The stability of the system has been discovered to be significantly affected by even minor 

anisotropic properties. Malashetty and Biradar [58] studied the double-diffusive convection in a horizontal couple 

stress fluid saturating an anisotropic porous layer. It is discovered that stationary, oscillatory, and finite amplitude 

convection are all delayed by the thermal anisotropy parameters. Rayleigh-Bénard convection in a porous medium 

with ferromagnetic fluid and a time-varying gravity field has been studied by Thomas and Maruthamanikandan [59]. 

They concentrated on how a porous matrix and gravity modulation might alter the stability necessary for the 

initiation of ferroconvection. Shamsudin and Mokhtar [60] investigated the impact of anisotropy on the 

electrothermal instability in a porous medium with nanofluid in the presence of a vertical ac electric field. 

 

Takashima and Hamabata [61] investigated spontaneous convection in a vertical layer of dielectric fluid in the 

presence of a horizontal ac electric field. It is shown that electric force has no impact on the natural convection 

stability mechanism when the electrical Rayleigh number is less about 2130. In a transverse electric field, Semenov 

[62] studied the parametric instability of a horizontal layer of liquid dielectric that has not been uniformly heated and 

has free isothermal boundaries. It is shown that instability can happen in a critical electric field strength that is 

several orders of magnitude higher than the critical strength of a constant electric field. The electrothermoconvective 

instability of a plane horizontal layer of poorly conducting fluid in a modulated vertical electric field is the subject 

of research by Velarde and Smorodin [63]. It has been demonstrated that modulation can either sustain or 

destabilize fluid equilibrium depending on the amplitude and frequency. Rudresha et al. [64] investigated the impact 

of electric field modulation on electroconvection in a porous material. They showed that effects of electric field 

modulation and porous medium are mutually antagonistic at low frequencies of electric field modulation. 

 

      Thermo-electroconvection in a dielectric fluid subjected to time-periodic electric field modulation with couple 

stresses has been investigated by Rudresha et al. [65]. It is shown that the stability of the system is strongly 

influenced by the couple stress parameter and the Prandtl number diminishes the stabilizing impact of couple 

stresses. The current study addresses how electric field modulation and anisotropic properties affect the stability 

criterion associated with the onset of electroconvection. The perturbation approach is used to determine the critical 

Rayleigh number and the associated wavenumber provided the amplitude of electric field modulation is of modest 

magnitude. The amplitude and frequency of the modulation are externally controlled parameters and hence the onset 

of electroconvection can be delayed or advanced by the proper tuning of these parameters. The problem has 

potential applications in achieving major enhancement of mass, momentum and heat transfer in the geothermal 

context and related areas. 
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2. Mathematical formulation 

 

The electric force which acts on the dielectric fluid per unit volume is expressed in the form [6] 

 

( ) ( )
1 1

2 2

d
e e df E E E E E


  



 
= +   +   

 
. (1) 

 

In the above equation, E  is the electric field, e  is the free electric charge density, d  is the dielectric constant 

and   is the fluid mass density. The first term e E  indicates the Coulomb force, while the second and third terms 

indicate the non-uniformities in the dielectric constant. Under a 60-Hz ac electric field, the Coulomb force is of 

insignificant order when compared with the dielectrophoretic force in the vast majority of dielectric fluids. As a 

result, we ignore the Coulomb force term and just keep the dielectrophoretic term. Additionally, dielectric liquids 

appear to have long electrical relaxation durations at common power line frequencies, which prevent free charges 

from developing. As a result, the dielectric loss has a little effect on the temperature field at these frequencies. 

 

The densely packed porous layer of dielectric fluid is confined to an infinitely long horizontal porous layer 

with surfaces at 0z =  and .z d=  These boundaries are sustained at constant temperatures 0T T=  and 1T T=  

respectively and modulation electric potential ( )1 2 cosU t   =  + is retained on the boundaries, where U  is the 

magnitude of the modulation of the electric potential, ω is the frequency of modulation and, 1 and 2  are the 

relative amplitudes of the components of constant and alternating potential difference. An anisotropic porous 

medium has three co-ordinate axes (x, y, and z) parallel to the main axes of the medium, and the z-axis points 

vertically upward, which is the opposite direction of gravity. Usually, homogeneous anisotropic porous media are 

homogeneous in two directions parallel to the bedding plane. So, it can be assumed that the bedding plane is 

isotropic, leading to the horizontal case. Based on the assumption that the permeabilities and thermal diffusivities 

are equal in the x and y directions, the xy plane has been considered the bedding plane. The relevant governing 

equations, taking into account that there are neither induced nor applied magnetics forces and invoking the 

Boussinesq approximation, read [10, 56] 

 

0q =  (2) 

( ) ( )0 1 1

2
f d

p p

q
q q p g K q E E

t


  

 

 
+  = − + − −   

  

 (3) 

( ) ( )T

T
q T T

t
 


+  = 


. (4) 

0d E   =   (5) 

0E E  =  = −  (6) 

( )0 01 T T   = − −   (7) 

( )0 01d e T T   = − −    (8) 

 

where ( ), ,q x y z= is the velocity vector, T is the temperature, d  is the dielectric constant, e is the expansion 

coefficient of dielectric constant (always positive), α is the thermal expansion coefficient, E  is the electric field,             

g  is the gravitational acceleration, ϕ is the electric potential, p is the pressure,   is the density of the fluid, f  is 
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the fluid viscosity, 0  is the density at reference temperature, 0  is the electrical permittivity, p  is the porosity of 

the porous medium, ( ) ( )1 1 ˆ ˆˆ̂ ˆˆ
x zK K ii j j K k k− −= + +  is the anisotropic permeability tensor with xK  and zK being the 

permeabilities of the porous medium in the horizontal and vertical directions respectively, 

( ) ( )ˆ ˆˆ̂ ˆˆ
T Tx Tzii j j k k  = + +  is the anisotropic thermal diffusivity tensor with Tx  and Tz  being the thermal 

diffusivities in the horizontal and vertical directions respectively, and  
( )

( )
m

f

c

c





=  is the ratio of specific heats.  

 

3. Basic state 

 

The basic state of the system is taken to be a quiescent layer and is given by 
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 (9) 

 

where suffix b represents the basic state. Using equation (9) in equations (2) through (8), we obtain  
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4. Linear Stability Analysis 

      

      We study the stability of this basic state using the method of small perturbations. On the basic state we 

superpose infinitesimal perturbations of the form 

 

( )' ', ', ' ; '; ';

'; '; .

b b

d d b bb

q q u v w p p p T T T

E E E     
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 (16) 

Using (16) in equations (2) through (8) and following the standard stability analysis [4, 56, 64], we obtain 
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where ( )1 1 22 cos ,L U t  = + ( )2 2 2 2 2
1 / / ,x y =   +   ( )2 2 2 2 2 2 2/ / /x y z =   +   +   and 

cos .f t=  Equations (17) through (19) are made dimensionless by means of the following transformations 

* '/ ,T T d=  
2* / ,Txt d= ( ) ( )*, *, * / , / , / ,x y z x d y d z d= * ' / Tzw w d =  and 1* '/ .e L T =   As a 

result, we obtain the following dimensionless equations (after dropping the asterisks for simplicity) 
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thermal anisotropy parameter. Combining equations (20) – (22) yields  
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     Keeping in mind the dielectric fluid saturated anisotropic porous layer obeying the Darcy law, we use the 
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impermeable condition for velocity (i.e., normal component of velocity vanishes at the boundaries) and isothermal 

conditions for temperature. The stress-free boundary conditions are chosen for mathematical simplicity without 

important physical effects being lost qualitatively. It follows that equation (23) must be solved subject to the 

following dimensionless homogeneous boundary conditions 

 
2 4

2 4
0 at    0,  1

w w
w z

z z

 
= = = =
 

 (24) 

 

Equation (23) along with boundary conditions (24) is a homogeneous system and thus constitutes an eigenvalue 

problem. 

 

5. Perturbation Procedure with small Amplitude Approximation 

 

The essential idea of perturbation theory is to find an analytic approximation to solutions of equations. The 

solution is represented based on the assumption that a small parameter must exist in the equation. Perturbation 

theory leads to an expression for the desired solution in terms of a formal power series in small parameter known as 

perturbation series that quantifies the deviation from the exactly solvable problem. The leading order terms describe 

the deviation in the solution. The eigenvalues and eigenfunctions of the problem at hand are distinct from those of 

the classical unmodulated electroconvection problem by a quantity of order 3 . As a result, equation (23) has a 

solution of the form [64] 
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The expression for the critical Rayleigh number corresponding to the study of convection in a horizontal dielectric 

fluid saturated densely packed anisotropic porous layer subjected to a uniform electric field is given by 

 

( )
( )

22
2 2 2

2 2 20

1 et
T

R
R


  

  

 
= + + − 

  + 

 . (26) 

 

Since we are keen on deciding the worth of the non-zero correction 
2TR  to TR , following the analysis of [64], the 

expression for 
2TR is given by 
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6. Results and Discussion 

 

     The effect of a time-varying electric field on the onset of electroconvection in a densely packed anisotropic 

porous layer is investigated in this paper. The correction Darcy-Rayleigh number 
2T c

R  is expressed as a function of 

the Darcy-electrical Rayleigh number etR , Darcy-Prandtl number rDP , thermal and mechanical anisotropy 

parameters η and ε respectively. The magnitude of the buoyancy force due to thermal gradient is effectively 

characterized by the thermal Rayleigh number TR . Physically, the electric Rayleigh number etR  represents the 

balance of energy released by electric force to the energy dissipation by viscous friction and thermal dissipation.       

The ratio between porosity, thermal Prandtl number and Darcy number is given by the Darcy-Prandtl number rDP . 

The thermal anisotropy parameter η represents the relative variation of the thermal diffusivity of the fluid layer in 

the horizontal and vertical directions. The mechanical anisotropy parameter ε, likewise, represents the relative 

variation of the permeability of the porous medium in the horizontal and vertical directions.  

 

 
Fig. 1:  Plot of 

2
versusT c

R   for different values of  etR  with 2rDP = , 0. 2 =  and 0. 5 = . 

 

It is worth mentioning that the results of this paper are significantly affected by the electric field modulating 

frequency ω. When ω is small, the period of modulation is long and the electric field modulation affects the fluid 

boundaries; however, when ω is large, the effect of modulation disappears. This is because the electric force takes a 

mean value leading to the equilibrium state of the unmodulated case; therefore, we only choose moderate values of 

ω in the current study. It is observed from Figures 1 through 4 that 
2T c

R  is negative for tiny ω. This suggests that 

electroconvection occurs earlier in the modulated system than in an unmodulated system. However, when ω  is 

moderate or large, 
2T c

R becomes positive, implying delayed convection. When the value of ω is increased further, 

2T c
R decreases and, for large ω, 

2T c
R  becomes independent of the frequency of the modulation. This is because 

when ω is very small, the period of modulation becomes sufficiently large, and the disturbances grow to a large 

extent, causing the entire system under consideration to become unstable. 
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Further, we observe from Figures 1 through 4 that in each curve there are two peak values of 
2TR
c

, one negative 

and another positive. If ω* represents the frequency at which 
2TR
c

changes its sign from negative to positive, then 

the modulated system may be classified as destabilized or stabilized, compared with the unmodulated system, 

according as ω < ω* or ω > ω*. First 
2TR
c

decreases to its maximum destabilizing value and then increases to its 

maximum stabilizing value and finally decrease to zero as the frequency increases from zero to infinity. Further, at 

some particular value of the frequency ω = ω0, the effect of modulation disappears entirely, i.e., 0
2TR
c
= . 

Unquestionably, these critical frequencies depend on the values of the other parameters arising in the study. 

 

     The analysis presented in this paper is based on the assumption that the modulation amplitude is very small, and 

the convection currents are weak, allowing nonlinear effects to be ignored. This is equivalent to the fact that the 

amplitude of 3 1w  should not exceed that of 0w , resulting in the condition 3  . As a result, the validity of the 

results obtained in this paper is dependent on the modulation frequency. The electric field modulation impacts the 

entire volume of the fluid when ω is sufficiently low (i.e., the period of modulation is large). As a result, the 

disturbance becomes larger. The effect of modulation is only present in a thin border layer close to the boundary, 

though, for large values of ω. This is because a renormalization of the static electric field occurs at high frequencies. 

Due to the electric force taking on a mean value at these thicknesses, the unmodulated scenario reaches its 

equilibrium state. Therefore, the modulation effect is only notable for small and moderate values of ω. Because the 

modulation amplitude is an externally controlled variable, it is possible to prevent finite amplitude instabilities by 

limiting its growth.  

 

 
Fig. 2: Plot of 

2T c
R vs   for different values of  η with 2rDP = , 5etR =  and 0. 5 = . 

 

      Figure 1 demonstrates the effect of the Darcy-electrical Rayleigh number etR  on the correction Rayleigh 

number 
2T c

R  with fixed values of Darcy-Prandtl number and anisotropic parameters. It is clear from this figure 

that, for low frequency of the modulating electric field, increasing the value of etR  decreases the magnitude of 

2TR
c

, and for moderate and higher frequencies, increasing the value of etR  increases the magnitude of .
2TR
c

 

Indeed, the value of 
2TR
c

 increases negatively with the Darcy-electrical Rayleigh number etR  at low frequencies, 
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but positively with the Darcy-electrical Rayleigh number at moderate and high frequencies, indicating that the effect 

of etR  is to destabilize the system at low frequencies while stabilizing the system at moderate and high values of ω. 

Figure 2 shows the variation of 
2TR
c

with ω for various values of the thermal anisotropy parameter η with the 

Darcy-electrical Rayleigh number, Darcy-Prandtl number and mechanical anisotropy parameter fixed. If ω is small, 

2TR
c

increases as η increases. The trend, however, reverses for moderate and large values of the frequency of 

electric field modulation ω. It follows that the parameter η, characterizing the thermal anisotropy of the dielectric 

fluid layer, is responsible for advancing the onset of electroconvection for moderate and large values of the 

frequency of electric field modulation and the opposite performance is observed for small values of ω.         

 

 
Fig. 3: Plot of 

2T c
R vs   for different values of  ε  with 2rDP = , 5etR =  and 0. 2 = . 

 

When all other parameters are statistically controlled, Figure 3 reflects the extent of the mechanical anisotropy 

parameter ε on the critical correction Rayleigh number 
2TR
c

. We can see from this figure that 
2TR
c

 increases as 

frequency ω increases from small values indicating that mechanical anisotropy parameter ε has a stabilizing effect 

on convection in an electric field modulated dielectric fluid anisotropic porous medium. However, the opposite trend 

is seen for moderate and large values of the frequency of electric field modulation ω. Figure 4 depicts the effect of 

the Darcy-Prandtl number rDP  on the critical correction Rayleigh number 
2TR
c

 when all other parameters are 

fixed. This figure shows that, regardless of the range of the frequency of electric field modulation ω, an increase in 

the Darcy-Prandtl number rDP  increases the values of 
2TR
c

, indicating that the Darcy-Prandtl number on the 

electric field modulated fluid layer of an anisotropic porous medium is stabilizing over the entire domain of the 

frequency of electric field modulation except for the disappearing effect of rDP  when the frequency of electric field 

modulation ω is sufficiently large.  
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Fig. 4: Plot of 

2T c
R vs   for different values of  rDP   with 0. 5 = , 5etR =  and 0. 2 = . 

 

7. Conclusions 

The thermal convective instability of a dielectric fluid saturated densely packed anisotropic porous layer driven 

by the dielectrophoretic force and electric field modulation is investigated. The correction Darcy-Rayleigh number 

is shown to depend sensitively on the Darcy-electrical Rayleigh number, Darcy-Prandtl number, mechanical and 

thermal anisotropy parameters. The following conclusions are drawn from the present study:   

 

• Subcritical convective motion is possible for low frequency modulation of the electric field and only supercritical 

motion exists for moderate and high frequencies of the electric field modulation in all the cases. 

• The classical destabilizing effect of the dielectrophoretic force associated with the unmodulated dielectric fluid 

layer is only realized for low frequency modulation of the electric field. 

• The dielectrophoretic force is shown to stabilize the system when the frequency of electric field modulation is 

moderate and large.  

• The thermal and mechanical anisotropic characteristics are responsible for the enhancement of the onset of 

electroconvection when the frequency of electric field modulation is moderate and large. 

• Delayed electrothermoconvective instability due to the presence of thermal and mechanical anisotropic 

characteristics is shown to be a possibility when the frequency of electric field modulation is small. 

• Deferment of the threshold of electroconvection is substantiated due to the presence of densely packed porous 

layer through the Darcy-Prandtl number for low and moderate values of the frequency of electric field 

modulation.                       

• In all cases, the modulation effect disappears at high frequencies of the time-varying electric field. 

 

In summary, electric field modulation in a horizontal layer of dielectric fluid saturated densely packed porous 

medium with anisotropic characteristics can induce or delay convection depending on the magnitude of the 

frequency of electric field modulation. As a result, electric field modulation mechanism can be employed to control 

convective instability in densely packed anisotropic porous media saturated with dielectric fluids.  
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