Numerical study of Casson nanofluid over an elongated surface in presence of Joule heating and viscous dissipation: Buongiorno model analysis

Document Type : Research Paper

Authors

1 Department of Mathematics, Gandhi Institute for Technology, Bhubanewar-752054, India

2 Department of Mathematics, Nirmala College, Ranchi, Jharkhand-834002, India

Abstract

Nanoparticles (NPs) have wide engineering and industrial applications including improving heat transfer, cooling and heating processes, refrigeration, and medical sciences like cancer treatment etc. Further, Buongiorno model is used to determine how Brownian motion and thermophoresis affect the unsteady 2D flow of Casson nanofluid (NF) over a stretching sheet entrenched in a porous medium. The flow is exposed to an exponential heat source, thermal radiation, dissipation, Joule heating, and transverse magnetic field. The diffusion of chemically reactive NPs to base fluid has been considered. The leading equations of flow model admit similarity solution and reduce to non-linear ODEs by appropriate similarity renovations and elucidated numerically by MATLAB software using bvp4c code. It is found that incidence of NPs in the base fluid reduces the shearing stress at the plate surface so as to avoid back flow. Thermophoresis favours the rise in volume fraction and temperature of the nanofluid. Use of high-Prandtl number base fluid and NP of high thermal conductivity could be of practical use to increase the rate of heat transfer and to avoid NP accumulation.

Keywords

[1]          L. J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 21, No. 4, pp. 645-647, 1970.
[2]          T. Mahapatra, A. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass transfer, Vol. 38, No. 6, pp. 517-521, 2002.
[3]          J. Misra, A. Sinha, Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion, Heat and Mass Transfer, Vol. 49, No. 5, pp. 617-628, 2013.
[4]          S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Engineering Journal, Vol. 4, No. 4, pp. 933-938, 2013.
[5]          G. Seth, R. Tripathi, M. Mishra, Hydromagnetic thin film flow of Casson fluid in non-Darcy porous medium with Joule dissipation and Navier’s partial slip, Applied Mathematics and Mechanics, Vol. 38, No. 11, pp. 1613-1626, 2017.
[6]          D. Gopal, N. Kishan, C. Raju, Viscous and Joule's dissipation on Casson fluid over a chemically reacting stretching sheet with inclined magnetic field and multiple slips, Informatics in medicine Unlocked, Vol. 9, pp. 154-160, 2017.
[7]          P. Sreenivasulu, T. Poornima, N. B. Reddy, Influence of joule heating and non-linear radiation on MHD 3D dissipating flow of casson nanofluid past a non-linear stretching sheet, Nonlinear Engineering, Vol. 8, No. 1, pp. 661-672, 2019.
[8]          M. Abd El-Aziz, A. A. Afify, MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence, Entropy, Vol. 21, No. 6, pp. 592, 2019.
[9]          M. Das, G. Mahanta, S. Shaw, S. Parida, Unsteady MHD chemically reactive double‐diffusive Casson fluid past a flat plate in porous medium with heat and mass transfer, Heat Transfer—Asian Research, Vol. 48, No. 5, pp. 1761-1777, 2019.
[10]        C. K. Kumar, S. Srinivas, A. S. Reddy, MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and Joule heating, Journal of Mechanics, Vol. 36, No. 4, pp. 535-549, 2020.
[11]        B. Gireesha, C. Srinivasa, N. Shashikumar, M. Macha, J. Singh, B. Mahanthesh, Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 233, No. 5, pp. 1173-1184, 2019.
[12]        B. Kumar, S. Srinivas, Unsteady hydromagnetic flow of Eyring-Powell Nanofluid over an inclined permeable stretching sheet with joule heating and thermal radiation, Journal of applied and computational mechanics, Vol. 6, No. 2, pp. 259-270, 2020.
[13]        M. A. El-Aziz, A. Afify, Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching sheet with zero nanoparticle mass flux, Thermophysics and Aeromechanics, Vol. 26, No. 3, pp. 429-443, 2019.
[14]        S. Ibrahim, P. Kumar, G. Lorenzini, E. Lorenzini, Influence of Joule heating and heat source on radiative MHD flow over a stretching porous sheet with power-law heat flux, Journal of Engineering Thermophysics, Vol. 28, No. 3, pp. 332-344, 2019.
[15]        K. Das, P. R. Duari, P. K. Kundu, Nanofluid flow over an unsteady stretching surface in presence of thermal radiation, Alexandria engineering journal, Vol. 53, No. 3, pp. 737-745, 2014.
[16]        B. Nagaraja, B. Gireesha, Exponential space-dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction, Journal of Thermal Analysis and Calorimetry, Vol. 143, No. 6, pp. 4071-4079, 2021.
[17]        B. Rout, S. Mishra, Thermal energy transport on MHD nanofluid flow over a stretching surface: a comparative study, Engineering science and technology, an international journal, Vol. 21, No. 1, pp. 60-69, 2018.
[18]        B. Mahanthesh, G. Lorenzini, F. M. Oudina, I. L. Animasaun, Significance of exponential space-and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces, Journal of Thermal Analysis and Calorimetry, Vol. 141, No. 1, pp. 37-44, 2020.
[19]        S. R. Asemi, A. Farajpour, H. R. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[20]        S. R. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[21]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[22]        M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and Stability Analysis of the Rotating Nanobeam in a Nonuniform Magnetic Field Considering the Surface Energy, International Journal of Applied Mechanics, Vol. 08, No. 04, pp. 1650048, 2016.
[23]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[24]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[25]        A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[26]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[27]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014/04/01/, 2014.
[28]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[29]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[30]        A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[31]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[32]        N. GHAYOUR, A. SEDAGHAT, M. MOHAMMADI, WAVE PROPAGATION APPROACH TO FLUID FILLED SUBMERGED VISCO-ELASTIC FINITE CYLINDRICAL SHELLS, JOURNAL OF AEROSPACE SCIENCE AND TECHNOLOGY (JAST), Vol. 8, No. 1, pp. -, 2011.
[33]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[34]        H. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Vol. 3, No. 2, pp. 47-56, 2010.
[35]        H. Moosavi, M. Mohammadi, A. Farajpour, S. H. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011/10/01/, 2011.
[36]        A. G. Arani, S. Maghamikia, M. Mohammadimehr, A. Arefmanesh, Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods, Journal of mechanical science and technology, Vol. 25, No. 3, pp. 809-820, 2011.
[37]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[38]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy Type Solution for Nonlocal Thermo-Mechanical Vibration of Orthotropic Mono-Layer Graphene Sheet Embedded in an Elastic Medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[39]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[40]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[41]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundation Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[42]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Shehni nezhad pour, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014/02/01/, 2014.
[43]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[44]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[45]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[46]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[47]        H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[48]        M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-Mechanical Vibration Analysis of FG Circular and Annular Nanoplate Based on the Visco-Pasternak Foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[49]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[50]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019/09/01/, 2019.
[51]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[52]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020/10/15, 2020.
[53]        M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022/12/01/, 2022.
[54]        P. D. Prasad, S. Saleem, S. Varma, C. Raju, Three dimensional slip flow of a chemically reacting Casson fluid flowing over a porous slender sheet with a non-uniform heat source or sink, Journal of the Korean Physical Society, Vol. 74, No. 9, pp. 855-864, 2019.
[55]        C. Raju, N. Sandeep, S. Saleem, Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid, Engineering Science and Technology, an International Journal, Vol. 19, No. 2, pp. 875-887, 2016.
[56]        C. Amanulla, A. Wakif, Z. Boulahia, M. Suryanarayana Reddy, N. Nagendra, Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40, No. 9, pp. 1-15, 2018.
[57]        C. Amanulla, N. Nagendra, M. S. Reddy, Computational analysis of non-Newtonian boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip, Nonlinear Engineering, Vol. 7, No. 1, pp. 29-43, 2018.
[58]        C. Amanulla, N. Nagendra, M. S. Reddy, Numerical Simulations on Magnetohydrodynamic Non-Newtonian Nanofluid Flow Over a Semi-Infinite Vertical Surface with Slipeffects, Journal of Nanofluids, Vol. 7, No. 4, pp. 718-730, 2018.
[59]        C. Amanulla, S. Saleem, A. Wakif, M. AlQarni, MHD Prandtl fluid flow past an isothermal permeable sphere with slip effects, Case Studies in Thermal Engineering, Vol. 14, pp. 100447, 2019.
[60]        S. M. Upadhya, C. Raju, S. Saleem, Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux, Results in Physics, Vol. 9, pp. 779-786, 2018.
[61]        M. J. Babu, N. Sandeep, S. Saleem, Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion, Alexandria Engineering Journal, Vol. 56, No. 4, pp. 659-669, 2017.
[62]        N. Nagendra, C. Amanulla, M. S. Reddy, V. R. Prasad, Hydromagnetic flow of heat and mass transfer in a nano Williamson fluid past a vertical plate with thermal and momentum slip effects: numerical study, Nonlinear Engineering, Vol. 8, No. 1, pp. 127-144, 2019.
[63]        N. Nallagundla, C. Amanulla, M. S. Reddy, Mathematical analysis of non-Newtonian nanofluid transport phenomena past a truncated cone with Newtonian heating, Journal of Naval Architecture and Marine Engineering, Vol. 15, No. 1, pp. 17-35, 2018.
[64]        R. Kumar, V. Gupta, I. A. Abbas, Plane deformation due to thermal source in fractional order thermoelastic media, Journal of computational and theoretical nanoscience, Vol. 10, No. 10, pp. 2520-2525, 2013.
[65]        A. D. Hobiny, I. A. Abbas, Fractional order thermoelastic wave assessment in a two-dimension medium with voids, Geomechanics and Engineering, Vol. 21, No. 1, pp. 85-93, 2020.
[66]        S. Horrigue, I. A. Abbas, Fractional-Order Thermoelastic Wave Assessment in a Two-Dimensional Fiber-Reinforced Anisotropic Material, Mathematics, Vol. 8, No. 9, pp. 1609, 2020.
[67]        M. Marin, A. Hobiny, I. Abbas, The effects of fractional time derivatives in porothermoelastic materials using finite element method, Mathematics, Vol. 9, No. 14, pp. 1606, 2021.
[68]        T. Saeed, I. A. Abbas, The Effect of Fractional Time Derivative on Two-Dimension Porous Materials Due to Pulse Heat Flux, Mathematics, Vol. 9, No. 3, pp. 207, 2021.
[69]        A. Abdalla, I. Abbas, H. Sapoor, The effects of fractional derivatives of bio-heat model in living tissues using analytical-numerical method, Information Sciences Letters, Vol. 11, No. 1, pp. 6, 2022.
[70]        T. Hayat, T. Muhammad, S. Shehzad, G. Chen, I. A. Abbas, Interaction of magnetic field in flow of Maxwell nanofluid with convective effect, Journal of Magnetism and Magnetic Materials, Vol. 389, pp. 48-55, 2015.
[71]        M. S. Ram, N. Ashok, S. Salawu, M. Shamshuddin, Significance of cross diffusion and uneven heat source/sink on the variable reactive 2D Casson flowing fluid through an infinite plate with heat and Ohmic dissipation, International Journal of Modelling and Simulation, pp. 1-15, 2022.
[72]        M. Shamshuddin, M. R. Eid, nth order reactive nanoliquid through convective elongated sheet under mixed convection flow with joule heating effects, Journal of Thermal Analysis and Calorimetry, Vol. 147, No. 5, pp. 3853-3867, 2022.
[73]        M. Shamshuddin, W. Ibrahim, Finite element numerical technique for magneto-micropolar nanofluid flow filled with chemically reactive Casson fluid between parallel plates subjected to rotatory system with electrical and Hall currents, International Journal of Modelling and Simulation, pp. 1-20, 2022.
[74]        M. Shamshuddin, F. Mebarek-Oudina, S. Salawu, A. Shafiq, Thermophoretic Movement Transport of Reactive Casson Nanofluid on Riga Plate Surface with Nonlinear Thermal Radiation and Uneven Heat Sink/Source, Journal of Nanofluids, Vol. 11, No. 6, pp. 833-844, 2022.
[75]        F. Mabood, M. Shamshuddin, S. Mishra, Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving flat plate: HAM solution, Mathematics and Computers in Simulation, Vol. 191, pp. 187-202, 2022.
[76]        G. R. Rajput, M. Shamshuddin, S. O. Salawu, Thermosolutal convective non‐Newtonian radiative Casson fluid transport over a vertical plate propagated by Arrhenius kinetics with heat source/sink, Heat Transfer, Vol. 50, No. 3, pp. 2829-2848, 2021.
[77]        M. Senapati, K. Swain, S. K. Parida, Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet, Karbala Int. J. Mod. Sci, Vol. 6, No. 1, pp. 93-102, 2020.
[78]        K. Swain, S. Parida, G. Dash, MHD heat and mass transfer on stretching sheet with variable fluid properties in porous medium, AMSE J Model B, Vol. 86, pp. 706-726, 2017.
[79]        S. K. Das, S. U. Choi, W. Yu, T. Pradeep, 2007, Nanofluids: science and technology, John Wiley & Sons,
[1]          L. J. Crane, Flow past a stretching plate, Zeit Angew Math Phys., Vol. 21, pp. 645-647, 1970.
[2]          T. R. Mahapatra, A. S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer, Vol. 38, pp. 517-521, 2002.
[3]          J. C. Misra, A. Sinha, Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion, Heat Mass Transfer, Vol. 49, pp. 617-628, 2013.
[4]          S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. C. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Engineering Journal, Vol. 4, pp. 933-938, 2013.
[5]          G. S. Seth, R. Tripathi, M. K.Mishra, Hydromagnetic thin film flow of Casson fluid in non-Darcy porous medium with Joule dissipation and Navier’s partial slip, Appl. Math. Mech.-Engl. Ed., Vol. 38, pp. 1613-1626, 2017.
[6]          D. Gopal, N. Kishan, C. S. K. Raju, Viscous and Joule's dissipation on Casson fluid over a chemically reacting stretching sheet with inclined magnetic field and multiple slips,  Informatics in Medicine Unlocked, Vol. 9, pp. 154-160, 2017.
[7]          P. Sreenivasulu, T. Poornima, N. B. Reddy, Influence of Joule Heating and Non-Linear Radiation on MHD 3D Dissipating Flow of Casson Nanofluid past a Non-Linear Stretching Sheet, Nonlinear Engineering, Vol. 8, pp. 661-672, 2019.
[8]          M. A. El-Aziz, A. A. Afify, MHD Casson Fluid Flow over a Stretching Sheet with Entropy Generation Analysis and Hall Influence, Entropy, Vol. 21, pp. 592, 2019.
[9]          M. Das, G. Mahanta, S. Shaw, S. B. Parida, Unsteady MHD chemically reactive double‐diffusive Casson fluid past a flat plate in porous medium with heat and mass transfer, Heat Transfer-Asian Res., Vol. 48, pp. 1761-1777, 2019.
[10]        C. K. Kumar, S. Srinivas, A. S. Reddy, MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and Joule heating, Journal of Mechanics, Vol. 36, pp. 535-549, 2020.
[11]        B. J. Gireesha, C. T. Srinivasa, N. S. Shashikumar, M. Macha, J. K. Singh JK, B. Mahanthesh, Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel, Proc I Mech E Part E: J Process Mechanical Engineering, Vol. 233, pp.1173-1184, 2019.
[12]        B. Kumar, S. Srinivas, Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation, J. Appl. Comput. Mech., Vol. 6, pp. 259-270, 2020.
[13]        M. A. El-Aziz, A. A. Afify, Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching sheet with zero nanoparticle mass flux, Thermophysics and Aeromechanics, Vol. 26, pp. 429-443, 2019.
[14]        S. M. Ibrahim, P. V. Kumar, G. Lorenzini, E. Lorenzini, Influence of Joule Heating and Heat Source on Radiative MHD Flow over a Stretching Porous Sheet with Power-Law Heat Flux, Journal of Engineering Thermophysics, Vol. 28, pp. 332-344, 2019.
[15]        K. Das, P. R. Duari P, P. K. Kundu, Nanofluid flow over an unsteady stretching surface in presence of thermal radiation, Alexandria Engineering Journal, Vol. 53, pp. 737-745, 2014.
[16]        B. Nagaraja, B. J. Gireesha, Exponential space‑dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction, J Therm Anal Calorim., Vol. 143, pp. 4071-4079, 2021.
[17]        B. C. Rout, S. R. Mishra, Thermal energy transport on MHD nanofluid flow over a stretching surface: A comparative study, Engineering Science and Technology, an International Journal, Vol. 21, pp. 60-69, 2018.
[18]       B. Mahanthesh, G. Lorenzini, F. M. Oudina, I. L. Animasaun, Significance of exponential space-and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces, J Therm Anal Calorim., Vol. 141, pp. 37-44, 2020.
[19]        M. Senapati, K. Swain, S. K. Parida, Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet, Karbala International Journal of Modern Science, Vol. 6, pp. 93-102, 2020.
[20]        K. Swain, S. K. Parida, G. C.  Dash, Effects of non-uniform heat source/sink and viscous dissipation on MHD boundary layer flow of Williamson nanofluid through porous medium, Defect and Diffusion Forum, Vol. 389, pp. 110-127, 2018.
[21]        H. R. Asemi, S. R. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[22]        S. R. Asemi, A. Farajpour, H. R. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[23]        S. R. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[24]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[25]        M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[26]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[27]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[28]        A. Farajpour, M. R. Hairi Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[29]        A. Farajpour, M. R. Hairi Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[30]        A. Farajpour, M. Mohammadi, A. R. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[31]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[32]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[33]        A. Farajpour, A. R. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[34]        A. Farajpour, M. R. H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[35]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[36]        N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, Journal of Aerospace Science and Technology, Vol. 8, No. 1, pp. 1-11, 2011.
[37]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
[38]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 4, pp. 659-682, 2014.
[39]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[40]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[41]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Shehni nezhad pour, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[42]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[43]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[44]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Vol. 3, No. 2, pp. 47-56, 2010.
[45]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, Journal of Solid Mechanics, Vol. 4, No. 2, pp. 128-143, 2012.
[46]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[47]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019.
[48]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[49]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, Vol. 69, No. 2, pp. 131, 2019.
[50]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, pp. 1-22, 2018.
[51]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[52]        H. Moosavi, M. Mohammadi, A. Farajpour, S. H. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[53]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics, Vol. 7, pp. 299-311, 2015.
[54]       P. Durga Prasad, S. Saleem, S. V. K. Varma, C. S. K. Raju, 3D slip flow of chemically reacting Casson fluid over a porous slender sheet with non-uniform heat source or sink, Journal of the Korean Physical Society, Vol. 74, pp.855-864, 2019.
[55]       C.S.K. Raju, N. Sandeep, S. Saleem, Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid, Engineering Science and Technology, an International Journal, Vol. 19, pp. 875-887, 2016.
[56]       Ch. Amanulla, A. Wakif, Z. Boulahia, M. S. Reddy, N. Nagendra, Numerical Investigations on Magnetic Field Modelling for Carreau Non-Newtonian Fluid Flow Past an Isothermal Sphere, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40, 462, 2018.
[57]       S. M. Upadhya, C.S.K. Raju, Mahesha, S. Saleem, Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux, Results in Physics, Vol. 9, pp. 779-786, 2018.
[58]       Ch. Amanulla, N. Nagendra, M. S. Reddy, Computational analysis of non-Newtonian boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip, Nonlinear Engineering, Vol. 7, pp.29-43, 2018.
[59]       M. J. Babu, N. Sandeep, S. Saleem, Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion, Alexandria Engineering Journal, Vol. 56, pp. 659-669, 2017.
[60]       Ch. Amanulla, N. Nallagundla, M. S. Reddy, Numerical Simulations on MHD Non-Newtonian Nanofluid Flow Over a Semi-infinite Vertical Surface with Slip Effects, Journal of Nanofluids, Vol. 7, pp. 718-730, 2018.
[61]       Ch. Amanulla, S. Saleem, A. Wakif, M. M. AlQarni, MHD Prandtl fluid flow past an isothermal permeable sphere with slip effects, Case Studies in Thermal Engineering, Vol. 14, pp. 100447, 2019.
[62]       N. Nagendra, Ch. Amanulla, M. S. Reddy, V. R. Prasad, Hydromagnetic Flow of Heat and Mass Transfer in A Nano Williamson Fluid Past a Vertical Plate with Thermal and Momentum Slip Effects: Numerical Study, Nonlinear Engineering, Vol. 8, pp. 1-18, 2018.
[63]       N. Nagendra, Ch. Amanulla, M. S. Reddy, Mathematical Analysis of Non-Newtonian Nanofluid Transport Phenomena Past a Truncated Cone with Newtonian Heating, Journal of Naval Architecture and Marine Engineering, Vol. 15, pp. 17-35, 2018.
[64]       R. Kumar, V. Gupta, I. A. Abbas, Plane deformation due to thermal source in fractional order thermoelastic media, J. Comput. Theor. Nanosci., Vol. 10, pp. 2520-2525, 2013.
[65]       D. A. Hobiny, I. A. Abbas, Fractional order thermoelastic wave assessment in a two-dimension medium with voids, Geomach. Eng., Vol. 21, pp. 85-93, 2020. 
[66]       S. Horrigue, I. A. Abbas, Fractional-order thermoelastic wave assessment in a two-dimensional fiber reinforced anisotropic material, Mathematics, Vol. 8, pp.1069, 2020.
[67]       M. Marin, A. Hobiny, I. Abbas, The effects of fractional time derivatives in porothermoelastic materials using finite element method, Mathematics, Vol. 9, pp. 1606, 2021.    
[68]       T. Saeed, I. A. Abbas, The effect of fractional time derivative on two-dimension porous materials due to pulse heat flux, Mathematics, Vol. 9, pp. 1-14, 2021.
[69]       A. Abdalla, I. Abbas, H. Sapoor, The effects of fractional derivatives of bio-heat model in living tissues using analytical-numerical method, Inf. Sci. Lett., Vol. 11, pp. 7-13, 2022.
[70]       T. Hayat, T. Muhammad, S. A. Shehzad, G. Q. Chen, I. A.Abbas, Interaction of magnetic field in flow of Maxwell nanofluid with convective effect, Journal of Magnetism and Magnetic Materials, Vol. 389, pp. 48-55, 2015.
[71]       M. S. Ram, N. Ashok, S. O. Salawu, Md. Shamshuddin, Significance of Cross diffusion and uneven heat source/sink on the variable reactive 2D Casson flowing fluid through an infinite plate with heat and ohmic dissipation, International Journal of Modelling and Simulations, 2022, https://doi.org/10.1080/02286203.2022.2084007.
[72]       Md. Shamshuddin, M. R. Eid, nth order reactive nanoliquid through convective elongated sheet under mixed convection flow with Joule heating effects, Journal of Thermal Analysis and Calorimetry, Vol. 147, pp. 3853-3867, 2022.
[73]       Md. Shamshuddin, W. Ibrahim, Finite element numerical technique for magneto-micropolar nanofluid flow filled with chemically reactive Casson fluid between parallel plates subjected to rotatory system with Electrical and Hall currents, International Journal of Modelling and Simulations, 2022. https://doi.org/10.1080/02286203.2021.2012634.
[74]       Md. Shamshuddin, F. Mebarek-Oudina, S. O. Salawu, A. Shafiq, Thermophoretic movement transport of reactive Casson nanofluid on Riga plate surface with nonlinear thermal radiation and uneven heat sink/source, Journal of Nanofluids, Vol. 11, pp. 833-844, 2022.
[75]       F. Mabood, Md. Shamshuddin, S. R. Mishra, Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving flat plate: HAM solution, Mathematics and Computers in Simulation, Vol. 191, pp. 187-202, 2022.
[76]       G. R. Rajput, Md. Shamshuddin, S. O. Sulyman, Thermosolutal convective non-Newtonian radiative Casson fluid transport over a vertical plate propagated by Arrhenius kinetics with heat source/sink, Heat Transfer, Vol. 50, pp. 2829-2848, 2020.
[77]       K. Swain, S. K. Parida, G. C. Dash, MHD heat and mass transfer on stretching sheet with variable fluid properties in porous medium, Modelling Measurement and Control B, Vol. 86, pp.706-726, 2017.
[78]       J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. J Nanopart Res. Vol. 6, pp. 577-588, 2004.
[79]       S. K. Das, S. S. Choi, W. Yu, T. Pradeep, Nanofluids Science and Technology. John Wiley & Sons INC. pp. 343, 2007.
Volume 53, Issue 3
September 2022
Pages 414-430
  • Receive Date: 10 August 2022
  • Revise Date: 26 August 2022
  • Accept Date: 27 August 2022
  • First Publish Date: 27 August 2022