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Abstract 

Nanoparticles (NPs) have wide engineering and industrial applications 

including improving heat transfer, cooling and heating processes, 

refrigeration, and medical sciences like cancer treatment etc. Further, 

Buongiorno model is used to determine how Brownian motion and 

thermophoresis affect the unsteady 2D flow of Casson nanofluid (NF) over a 

stretching sheet entrenched in a porous medium. The flow is exposed to an 

exponential heat source, thermal radiation, dissipation, Joule heating, and 

transverse magnetic field. The diffusion of chemically reactive NPs to base 

fluid has been considered. The leading equations of flow model admit 

similarity solution and reduce to non-linear ODEs by appropriate similarity 

renovations and elucidated numerically by MATLAB software using bvp4c 

code. It is found that incidence of NPs in the base fluid reduces the shearing 

stress at the plate surface so as to avoid back flow. Thermophoresis favours 

the rise in volume fraction and temperature of the nanofluid. Use of high-

Prandtl number base fluid and NP of high thermal conductivity could be of 

practical use to increase the rate of heat transfer and to avoid NP 

accumulation. 

Keywords: Stretching sheet; Casson fluid; thermophoresis; Brownian motion; thermal 

radiation.   

1. Introduction 

Flow of an incompressible viscous fluid over an elongating sheet has significant manufacturing and industrial uses 

such as drawing glass fibres, producing crystals, extruding plastic, making paper, etc. Crane [1] established a closed 

form similarity solution to a flow due to stretching sheet. Mahapatra and Gupta [2] studied the stagnation point flow 

towards an extending sheet. In recent years, study of non-Newtonian fluid has gained more importance due to its 

industrial applications. Further, Misra and Sinha [3] studied the biological applications of flow on stretching surface. 

Casson fluid is a form of non-Newtonian fluid due to its rheological properties in regard to the shear stress-strain 

connection. Above a critical stress value, it behaves like a Newtonian fluid, but at low shear and strain, it behaves 

like an elastic solid. Authors like Mukhopadhyay et al. [4], Seth et al. [5], Gopal et al. [6], and Sreenivasulu et al. [7] 

explored their study on Casson fluid past an extending sheet by taking various fluid properties. El-Aziz and Afify [8] 

studied the Casson fluid flow over a stretching sheet with entropy generation. Das et al. [9] considered the mass and 

heat transfer analysis on unsteady flow Casson fluid past a flat plate. Further, several authors [10-17] have studied the 

Casson NF flow by taking different flow models. Recently, Mahanthesh et al. [18] inspected the effect of 
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exponential heat source on NF flow over a stretched disk.   

Asemi et al. [19] studied nanoscale mass detection based on vibrating piezoelectric ultrathin films. Asemi et al. 

[20, 21] studied the vibration of double-piezoelectric-nanoplate systems based on nonlocal elasticity theory. Baghani 

et al. [22] studied the stability analysis of the rotating nanobeam in a nonuniform magnetic field. Danesh et al. [23] 

analysed the tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Farajpour et al. 

[24-30] studied the buckling analysis of variable thickness considering different geometry. Farajpour et al. [31] 

studied the vibration of piezoelectric nanofilm-based electromechanical sensors through higher-order non-local 

strain gradient theory. Ghayour et al. [32] examined the wave propagation approach to fluid filled submerged visco-

elastic finite cylindrical shells. Goodarzi et al. [33] investigated the effect of pre-stressed on vibration frequency of 

rectangular nanoplate. Mohammadi et al. [19-53], Moosavi et al. [35] and Safarabadi et al. [46] studied the vibration 

analysis of graphene sheet considering various conditions.  

Prasad et al. [54] studied slip flow of chemically reacting Casson fluid over a porous slender sheet. Raju et al. 

[55] examined the impact of induced magnetic field on stagnation flow of a Casson fluid. Amanulla et al. [56-59] 

studied the non-Newtonian fluid flow under different conditions. Upadhya et al. [60] and Babu et al. [61] studied the 

free convective flow of nanofluids. Nagendra et al. [62, 63] studied the flow of non-Newtonian fluid with slip 

boundary conditions. Authors such as Kumar at al. [64], Hobiny et al. [65], and Horrigue et al. [66] studied the 

fractional-order thermoelastic wave assessment. Many authors [67-69] have numerically studied the fractional time 

derivative. Hayat et al. [70] studied the flow of nanofluid with convective boundary conditions. Ram et al. [71] 

studied the effect of heat source/sink on the variable reactive Casson fluid through an infinite plate. Shamshuddin et 

al. [72-74] studied the nanofluid flow considering different flow models. Mabood et al. [75] studied the 

thermophoresis and Brownian motion on micropolar fluid flow towards continuously moving flat plate. Rajput et al. 

[76] studied the non-Newtonian radiative Casson fluid flow over a vertical plate. 

In view of the above cited literature survey, the objective of the present analysis is laid down as follows. 

The momentum transport equation of Casson nanofluid has been modified due to temperature as well as space 

dependent free stream (potential flow) stretching. Further, the presence of two body forces, one of electro-magnetic 

force and another evolved due to permeability of the saturated porous medium embedding the stretching sheet 

through which flow occurs. Most importantly, the heat equation becomes more complex due to inclusion of the 

followings: inclusion of Brownian motion represented by Brownian diffusion coefficient, thermophoresis, thermal 

radiation, Joulian and viscous dissipation. In addition to those complex thermal and molecular processes, the 

presence of time, space and temperature dependent exponential heat sink/source has made the analysis unique, 

hardly studied earlier. Further, the current analysis brings to its fold the viscous flow by letting  →  and constant 

surface condition by letting the coefficients
0 0, 0T C → . 

2. Design of the problem 

Consider an unsteady, laminar 2D flow of a Casson NF over an elongated sheet in presence of porous 

matrix as shown in Fig. 1. The y-axis is taken normal to the plate and the flow confined to the plane 0y  , is due to 

elongated bounding surface and free stream. A transverse magnetic field of strength 
0B is applied along y-axis. The 

interaction of the conducting fluid with transversely applied magnetic field generates an electromagnetic force 

which resists the fluid motion. We have restricted our discussion to low magnetic Reynolds number to avoid the 

effect of induced magnetic field that paves the way for future study. The constitutive equation for an isotropic and 

incompressible flow of Casson fluid is given by [77] 
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where ,B yp are the plastic dynamic viscosity, yield stress of the fluid respectively, ij ije e = , ije is the 

( ),
th

i j component of the deformation rate and c is the critical value of  , based on non-Newtonian model. 

 

The leading equations with prescribed boundary conditions of the unsteady incompressible Casson nanofluid 

flow following [15] are: 
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Using Rosseland approximation [20]  
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where  * and 
*k  are respectively known as Stefan-Boltzmann constant and absorption coefficient. 

The value of ( )r y
q is substituted in equation (3) for further analysis in reducing non-dimensional form. 

 

 
Fig 1: Flow geometry 

The ensuing similarity variables and transformations have been entreated. 
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Now, the equations (1) - (5) convert 
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Physical quantities of engineering interest: 
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The steady-state flow can be retrieved by taking 0S = .  

 

3. Results and discussion 

The set of non-linear ODEs (6) - (9) are solved numerically by MATLAB software using bvp4c code. The 

pressure gradient has been evaluated by the potential flow. No cross flow exists at the surface. The wall temperature 

and concentration are more than free stream temperature and concentration since 1 0t−  and 0a  . Thus, there 

is a thermal energy as well as mass transfer occur from the bounding surface to the flow domain. In view of 

similarity variable and transformations, the study of squeezing flow as well as low surface temperature and 

concentration are constrained so that only stretching is possible in the present study. Due to stretching ratio 

parameter  ( )1  , the inverted boundary layer is formed and hence the effects of parameters are reversed. 

Therefore, the presentation and discussion thereof are tacitly dealt with. The validity of the results is verified with 

the work conveyed in the literature and revealed in Table 1. Further, throughout the computation, we fixed the 

values of the non-dimensional parameters as 0.5, 0.3, 0.1,p eM K S Nb Nt R Ec Q = = = = = = = = = =  

Pr 5, 2,n= =  and 1Sc = except those the particular variation is deployed in the corresponding figure. 

 

Table 1: Computation of ( )0f   when 0, .M Kp S = = = →
 

  Das et al. [15] Swain et al. [78] Rout and Mishra [17] Present study 

0.1 -0.969328 -0.96965625 -0.96966 -0.9696514 

0.2 -0.918098 -0.91816450 -0.91816 -0.9181601 

0.5 -0.667301 -0.66726432 -0.66726 -0.6672609 
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2 2.017467 2.01750252 2.017502 2.0175025 

3 4.729406 4.72928082 --- 4.7292808 

 

The unsteadiness of the flow reduces the momentum transport but enhances the thermal energy irrespective 

of the impacts of other parameters. Figs. 2 - 4 show the effects of , ,M    pK  on velocity distribution. The 

boundary layer is formed when 1  i.e. with higher rate of free stream stretching than bounding surface. The 

inverted boundary layer is formed for 1  . The magnetic ( )M  and porosity ( )pK  parameters reduce the 

velocity due to resistive Lorentz force and existence of porous matrix respectively and the effect is reversed in case 

of inverted boundary layer. The effect of   is to reduce the velocity, resulting a thinning of boundary layer.  

Figs. 5-9 depict the temperature distribution for various values of the parameters. It is seen that an increase 

in Ec  and R  increases the temperature as increase in Ec and R contribute to higher thermal energy (Figs. 5 and 

6). Physically, Ec represents the amount of heat energy that is added as a result of viscous dissipation. Additionally, 

it can be observed that temperature rises as heat source parameter values rise, and in the presence of sink; it 

decreases (Fig. 7). Fig. 8 shows that temperature decreases with higher exponential index ( )n which is also evident 

from equation (4) as the exponent is negative but higher stretching rate decreases the temperature since it quickens 

the process of diffusion of thermal energy. Fig. 9 shows the distribution of temperature as well as volume fraction of 

NP. It is evident that an increase in Brownian motion parameter ( )Nb , increases the thermal energy, and hence the 

temperature but the reverse effect is well marked in case of solutal concentration/volume fraction. In case of 

thermophoresis parameter ( )Nt , both volume fraction and temperature get accelerated with thermophoretic 

processes.  

Figs. 10 and 11 depict the solutal concentration of NP. It is seen that higher stretching as well as higher 

Schmidt number ( )Sc  depletes the concentration level. Since both higher rate stretching and Schmidt number 

(heavier species) decelerates the mass diffusion contributing to thinner solutal boundary layer. From Fig. 11, it is 

evident that unsteady parameter decreases the concentration but Casson fluidity enhances it. It is oberved that slight 

instability is marked in concentration distribution for low Sc i.e., for lighter species and Casson parameter ( ) . 

Table 2 shows the variations of ( )0f − , ( )0 − and ( )0−  for different values of parameters. It is 

perceived that for fixed values of other parameters, the wall shear stress ( ) 0f −  enhances with the rise in the 

values of M  and S , whereas it declines with increase in the value of  . In fact, Fig. 2 corroborates this observation 

as increase in M leads to decrease in velocity gradient at the surface for 1  as well as 1  . Therefore, it is 

suggested that the magnetic intensity is to be reduced to decrease the shear at the bounding surface. Further, it is 

concluded that higher the unsteadiness, greater the shearing stress at the bounding surface. Moreover, the rates of 

heat transfer and solutal concentration rise with   and S  but in case of M , rate of heat transfer declines but the 

rate of solutal concentration increases. It is perceived that ( )0 − increases with increase in Pr as well as strength 

of exponential heat sink ( )0eQ  whereas ( )0−  decreases. It is important to remark that ,Ec Sc and exponential 

heat source ( )0eQ  affect ( )0 − and ( )0−  adversely as compared to that of Pr and ( )0eQ  . This interesting 

result admits following physical interpretation. Lower Prandtl fluids possess greater thermal conductivity so that, 

diffusion of heat from the sheet is faster than higher Prandtl fluids. The above results are pertinent to the base liquids 

without the presence of NPs. However, according to Koo and Kleinstreuer [78], the inclusion of 20-nm copper NPs 

at modest volume fractions (1 to 4%) to high Prandtl number fluids considerably improves the heat transfer 

performance of a microchannel heat sink [79]. So use of high-Prandtl-number BFs and NPs of high thermal 

conductivity could be of practical use to increase the heat transfer and to avoid NP accumulation. The effect of 

increase in viscous dissipation parameter ( )Ec is to reduce the wall temperature gradient ( )0 −  as an increase in 

Ec  increases the temperature since more heat energy is stored up in the fluid due to frictional heating. Further, it is 

to note that higher Sc (heavier species of diffusion) and exponential heat source ( )0eQ  also reduce ( )0− . But 

most interestingly, the rate of solutal concentration at the wall shows the opposite effect compared to rate of heat 

transfer. This may be attributed to the fact that higher thermal energy enhances the solutal diffusion causing the fall 
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of concentration and hence, the flux at the wall. One more point is to note that in the present analysis, no significant 

effect of ,R Ec and Sc on the force coefficient is marked. Thus, it is concluded that presence of NPs in the BF 

reduces the shearing effect at the plate surface so that it may impose stability or avoid back flow (flow separation) in 

the downstream.    

 

4. Concluding remarks 

The following key findings are as follows: 

• The unsteadiness of the flow reduces the momentum transport but enhances the thermal energy irrespective 

of the effects of other parameters. 

• The stretching ratio of free stream and plate surface plays a vital role in the formation of boundary layer 

and inverted boundary layer causing the flow reversal. 

• Thermophoresis favours the rise in volume fraction and temperature of the nanofluid. 

• Unsteadiness flow decreases the level of concentration but Casson fluidity enhances it.  

• Use of high-Prandtl number BF and NP of high thermal conductivity could be of practical use to increase 

the rate of heat transfer and to avoid NP accumulation.  

• The presence of NPs in the BF reduces the shearing stress at the plate surface so as to avoid back flow.   

 

 

Fig 2: Velocity distributions versus M and 
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Fig 3: Velocity distributions versus    

 

Fig 4: Velocity distributions versus pK   
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Fig 5: Temperature distributions versus Ec   

 

Fig 6: Temperature distributions versus R   
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Fig 7: Temperature distributions versus 
eQ   

 

Fig 8: Temperature distributions versus n  and   
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Fig 9: Temperature and concentration distributions versus Nb  and Nt   

 

Fig 10: Concentration distributions versus Sc  and 
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Fig 11: Concentration distributions versus S  and 
  

 

 

 

 

 

Table 2: Computation of ( ) ( ) ( )0 , 0 and 0f    − −  when  0.5, 0.3, 2.Kp Nb Nt n= = = = =  

M    S  Pr  R  Ec

 

Sc

 eQ
 

( )0f −  ( )0 −

 

( )0−

 

0.1 0.1 0 2 0.1 0.1 1 0.1 0.690075 1.593641 0.662945 

0.5        0.763479 1.548217 0.663050 

1        0.846787 1.490263 0.668581 

 0.3       0.695486 1.550537 0.722526 

 0.5       0.521781 1.606041 0.767754 

  0.5      0.550046 1.959737 0.885626 

  1      0.577368 2.259591 0.990695 

   3     0.577368 2.578165 0.779118 

   5     0.577368 2.971211 0.508111 

    0.3    0.577368 3.473128 0.619323 

    0.5    0.577368 3.935834 0.712331 

     0.3   0.577368 3.639983 0.839830 

     0.5   0.577368 3.341396 0.968801 

      2  0.577368 3.080330 2.138669 
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      5  0.577368 2.745269 4.207764 

       0.5 0.577368 2.511262 4.277873 

       1 0.577368 2.215085 4.367104 

       -0.5 0.577368 3.091518 4.104659 

       -1 0.577368 3.375783 4.020584 

 

Nomenclature 
,u v  Velocities along x  and y   

directions   respectively (m/s)  

Qe        Exponential space-based heat  

      source/  sink parameter 

a  Stretching rate (s-1) T  Temperature ( )0K  

b
 

Strength of stagnation flow (s-1) C  
Concentration 

t
 

Time (s) Ue  Ambient fluid velocity (m/s) 

0B
 

Magnetic field strength  Tw  Temperature of the wall ( )0K  

M  Magnetic parameter  T
 Ambient temperature ( )0K  

K
 

Porosity parameter C
 Ambient concentration 

n  Exponential index  Greek Symbols 

Pr  Prandtl number   Similarity variable 

Nb  Brownian motion parameter   
Electrical conductivity ( )1 1m− −   

Nt  Thermophoresis parameter   Stream function 

Sc  Schmidt number   Positive constant 

R  Radiation parameter   Casson parameter 

S  Unsteadiness parameter   Stretching ratio parameter 

BD  Brownian diffusion coefficient (m2/s))   Thermal diffusivity 

TD  Thermophoresis diffusion coefficient(m2/s)   Ratio of the nanoparticle heat  

capacity to the base fluid heat capacity 

pc  Specific heat at constant temperature ( )
f

c  Heat parameter of base fluid (J/kg K) 

Q  heat source/sink parameter ( )
p

c  Heat parameter of nanoparticle(J/kg K) 

k  Thermal conductivity coefficient (m2/s) 
f   Dynamic viscosity of base fluid(kg/m s) 

K
 Permeability of the medium 

f  Kinematic viscosity of base fluid(m2/s) 

Q  Heat source/sink coefficient 
f  

Density of base fluid (kg/m3) 
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Numerical Solution and MATLAB code 

The dimensionless coupled nonlinear ordinary differential equations (6) - (9) are solved numerically by Runge-Kutta 

fourth order method with shooting technique using MATLAB code with step length 0.01 = and the error 

tolerance
510−
. In this method, the equations are reduced to a set of first order differential equations:  

1 2 ,y y =  

2 3 ,y y =  
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with the initial conditions 

( ) ( ) ( ) ( )1 2 4 60 0, 0 1, 0 1, 0 1.y y y y= = = =  

Now, the initial value problem is solved by appropriately guessing the missing initial values i.e. 

( ) ( ) ( )3 5 60 , 0 ,and 0y y y  using shooting technique for various sets of parameters. There is an inbuilt self-

corrective procedure in the MATLAB coding (bvp4c code) to correct the unknown guess values. 


