A theoretical model for analysis of ionic polymer metal composite sensors in fluid environments

Document Type: Research Paper

Authors

Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

By the past two decades IPMCs have been intensively studied because of their special capabilities for actuation and sensing.This paper presents a theoretical physics based model for analyzing the behavior of IPMC sensors in fluid environments. The mechanical vibration of the IPMC strip is described by the classical Euler–Bernoulli beam theory. The model also takes in to account the physical properties of the surrounding fluid. The resulting model is an infinite-dimensional transfer function that relates the input tip displacement to the output sensing current. Further the original model is reduced to a finite-dimensional one, for pure sensing applications of IPMC sensors such as structural health monitoring. The proposed model is verified using existing experimental data. Then the effect of various parameters is investigated. The acoustics physics interface in COMSOL Multiphysics software is used for coupled modal analysis of the IPMC strip. It is shown that the effect of surrounding fluid cannot be neglected.

Keywords

[1]           M. Porfiri, H. Sharghi, P. Zhang, Modeling back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers, Journal of Applied Physics, Vol. 123, No. 1, pp. 014901, 2018.
[2]           H. Liu, K. Xiong, K. Bian, K. Zhu, Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators, Acta Mechanica Sinica, Vol. 33, No. 2, pp. 382-393, 2017.
[3]           X. Chen, C.-Y. Su, Adaptive control for ionic polymer-metal composite actuators, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 46, No. 10, pp. 1468-1477, 2016.
[4]           I. Dominik, J. Kwaśniewski, F. Kaszuba, Ionic polymer-metal composite displacement sensors, Sensors and Actuators A: Physical, Vol. 240, pp. 10-16, 2016.
[5]           D. Bandopadhya, Application of Lambert W-function for solving time-delayed response of smart material actuator under alternating electric potential, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 230, No. 13, pp. 2135-2144, 2016.
[6]           D. Biswal, D. Bandopadhya, S. Dwivedy, Electro-mechanical and thermal characteristics of silver-electroded ionic polymer–metal composite actuator, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 226, No. 6, pp. 1427-1436, 2012.
[7]           M. Shahinpoor, Y. Bar-Cohen, J. Simpson, J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review, Smart materials and structures, Vol. 7, No. 6, pp. R15, 1998.
[8]           H. Moeinkhah, J.-Y. Jung, J.-H. Jeon, A. Akbarzadeh, J. Rezaeepazhand, K. Park, I.-K. Oh, How does clamping pressure influence actuation performance of soft ionic polymer–metal composites?, Smart Materials and Structures, Vol. 22, No. 2, pp. 025014, 2013.
[9]           D. Pugal, P. Solín, K. Kim, A. Aabloo, hp-FEM electromechanical transduction model of ionic polymer–metal composites, Journal of Computational and Applied Mathematics, Vol. 260, pp. 135-148, 2014.
[10]         Q. Shen, V. Palmre, T. Stalbaum, K. J. Kim, A comprehensive physics-based model encompassing variable surface resistance and underlying physics of ionic polymer-metal composite actuators, Journal of Applied Physics, Vol. 118, No. 12, pp. 124904, 2015.
[11]         Y. Bar-Cohen, S. Leary, A. Yavrouian, K. Oguro, S. Tadokoro, J. Harrison, J. Smith, J. Su, Challenges to the transition of IPMC artificial muscle actuators to practical application, 1999.
[12]         M. Shahinpoor, K. J. Kim, Ionic polymer-metal composites: I. Fundamentals, Smart materials and structures, Vol. 10, No. 4, pp. 819, 2001.
[13]         H. Moeinkhah, J. Rezaeepazhand, A. Akbarzadeh, I.-K. Oh, Accurate dynamic modeling of helical ionic polymer-metal composite actuator based on intrinsic equations, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 4, pp. 1680-1688, 2015.
[14]         R. Tiwari, K. Kim, Disc-shaped ionic polymer metal composites for use in mechano-electrical applications, Smart Materials and Structures, Vol. 19, No. 6, pp. 065016, 2010.
[15]         D. Pugal, K. J. Kim, A. Aabloo, An explicit physics-based model of ionic polymer-metal composite actuators, Journal of Applied Physics, Vol. 110, No. 8, pp. 084904, 2011.
[16]         D. Pugal, K. J. Kim, A. Punning, H. Kasemägi, M. Kruusmaa, A. Aabloo, A self-oscillating ionic polymer-metal composite bending actuator, Journal of Applied Physics, Vol. 103, No. 8, pp. 084908, 2008.
[17]         H. Lei, M. A. Sharif, X. Tan, Dynamics of omnidirectional IPMC sensor: Experimental characterization and physical modeling, IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 2, pp. 601-612, 2016.
[18]         H. Moeinkhah, J. Rezaeepazhand, A. Akbarzadeh, Analytical dynamic modeling of a cantilever IPMC actuator based on a distributed electrical circuit, Smart Materials and Structures, Vol. 22, No. 5, pp. 055033, 2013.
[19]         Z. Chen, X. Tan, A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators, IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 5, pp. 519-529, 2008.
[20]         P. De Gennes, K. Okumura, M. Shahinpoor, K. J. Kim, Mechanoelectric effects in ionic gels, EPL (Europhysics Letters), Vol. 50, No. 4, pp. 513, 2000.
[21]         K. Farinholt, D. J. Leo, Modeling of electromechanical charge sensing in ionic polymer transducers, Mechanics of Materials, Vol. 36, No. 5-6, pp. 421-433, 2004.
[22]         Z. Chen, X. Tan, A. Will, C. Ziel, A dynamic model for ionic polymer–metal composite sensors, Smart Materials and Structures, Vol. 16, No. 4, pp. 1477, 2007.
[23]         M. Aureli, C. Prince, M. Porfiri, S. D. Peterson, Energy harvesting from base excitation of ionic polymer metal composites in fluid environments, Smart materials and Structures, Vol. 19, No. 1, pp. 015003, 2009.
[24]         T. Ganley, D. L. Hung, G. Zhu, X. Tan, Modeling and inverse compensation of temperature-dependent ionic polymer–metal composite sensor dynamics, IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 1, pp. 80-89, 2011.
[25]         H. Lei, C. Lim, X. Tan, Modeling and inverse compensation of dynamics of base-excited ionic polymer–metal composite sensors, Journal of Intelligent Material Systems and Structures, Vol. 24, No. 13, pp. 1557-1571, 2013.
[26]         M. Patel, S. Mukherjee, Modelling and Analysis of Ionic Polymer Metal Composite based Energy Harvester, Materials Today: Proceedings, Vol. 5, No. 9, pp. 19815-19827, 2018.
[27]         H. F. Brinson, L. C. Brinson, Polymer engineering science and viscoelasticity, New York: Springer, Vol. 66, pp. 79, 2008.
[28]         D. Gutierrez-Lemini, 2014, Engineering viscoelasticity, Springer,
[29]         P. Brunetto, L. Fortuna, S. Graziani, S. Strazzeri, A model of ionic polymer–metal composite actuators in underwater operations, Smart materials and Structures, Vol. 17, No. 2, pp. 025029, 2008.
[30]         J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of applied physics, Vol. 84, No. 1, pp. 64-76, 1998.
[31]         E. B. Magrab, 2012, Vibrations of elastic systems: With applications to MEMS and NEMS, Springer Science & Business Media,
[32]         S. S. Rao, 2007, Vibration of continuous systems, Wiley Online Library,
[33]         S. Nemat-Nasser, J. Y. Li, Electromechanical response of ionic polymer-metal composites, Journal of Applied Physics, Vol. 87, No. 7, pp. 3321-3331, 2000.
[34]         C. A. Van Eysden, J. E. Sader, Resonant frequencies of a rectangular cantilever beam immersed in a fluid, Journal of applied physics, Vol. 100, No. 11, pp. 114916, 2006. 

Volume 51, Issue 1
June 2020
Pages 21-29
  • Receive Date: 31 May 2019
  • Revise Date: 21 May 2020
  • Accept Date: 28 June 2019