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1. Introduction 

In recent years ionic polymer metal composites (IPMCs), 
which are a unique and new class of smart materials, have been 
studied by so many theorists and practitioners for their great 
potential applications in sensing and actuation [1-7]. IPMC 
sensors are very sensitive to low mechanical stimulus which is an 
advantage over some piezoelectric sensors. Flexibility, low 
power consumption, large stroke, excellent biocompatibility and 
operation in wet environments are some other advantages of the 
IPMCs [8, 9]. As illustrated in Figure 1, an IPMC is made of a 
soft ionic polymer membrane sandwiched between thin noble 
metal electrode layers [10]. Typical polymer membrane materials 
are Nafion )Perfluorosulfonate) and Flemion 
(Perfluorocarboxylate) [11] and for the electrodes with high 
conductivity specification, metals such as platinum, silver and 
gold can be used [12]. According to the requirements, these 
groups of smart materials can be made in variety of shapes and 
sizes [13, 14]. IPMCs are capable of converting energy between 
chemical, electrical and mechanical domains. Applying a voltage 
between the conductive electrodes, causes the free cations and 
attracted water molecules to migrate from the anode to the 
cathode side. Due to this mechanism, bending motions of the 
IPMC occur. The polarity of the applied voltage determines the 
bending direction of the IPMC. Noting that the anions are fixed 
to the polymer backbone and are not free to move [15, 16]. On 
the other hand, an applied deformation on an IPMC strip causes 

redistribution of the free cations inside the polymer and produces 
a short circuit current across the electrodes [17]. Thus the main 
cause of both of the actuation and sensing phenomena is induced 
ionic current. 

To study and describe the behavior of IPMCs, up till now 

several models have been proposed and applied. We can classify 

these models into three categories as [18]: 1- the black box 

model, 2- the gray box model and 3- the physical model. The 
most complex forms among them are physical models, in which 

the ionic current through the polymer membrane is related to the 

mechanical deformation [19]. 

Comparing with the intensive works which have been done on 

modeling of IPMC actuators, limited researches have been done 

on IPMC sensors. Based on linear irreversible thermodynamics 
De Gennes et al. [20] proposed a static model to capture both 

actuation and sensing mechanisms of IPMCs. Farinholt and Leo 

[21] derived the charge sensing response for a cantilevered IPMC 

beam under a step change in tip displacement. Chen et al. [22] 

developed a physics-based, geometrically scalable model for 

IPMC sensors. Their mechanical model was simple and did not 
include damping effects. They also investigated structural health 

monitoring capabilities of IPMC sensors. Aureli et al. [23] 

experimentally and theoretically investigated energy harvesting 

capabilities of base excited IPMC sensors in fluid environments. 

Their theoretical modeling approach was complicated. In 2011 
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Ganly et al. [24] presented the first systematic studies on 

temperature-dependent IPMC sensing dynamics. They used a 
gray box model in form of a forth order transfer function. Lei and 

Tan [25] developed a dynamic model for a base-excited IPMC 

sensor operating in air. Using a mathematical model, an 

estimation of the power harvested by the multilayered cantilever 

IPMC sensors from the base excitation is reported in [26]. Most 

of these papers are investigating the features and possible 
applications of IPMC sensors instead of proposing a complete 

model. 

To the best of our prior studies and knowledge, there is no 

complete mechanical model for the IPMC sensors. In this 

research a dynamic, physics based model for analyzing the 

behavior of the IPMC sensors is presented. This work extends 
previous studies as it incorporates the effect of the surrounding 

fluid on the IPMC vibration. The frequency response of an elastic 

structure is very sensitive to the nature of the fluid in which it is 

submerged. The deformation of the IPMC is modeled by Euler-

Bernoulli beam theory, incorporating viscoelastic damping of the 

polymer membrane and the surrounding fluid damping force. The 
description of ion transport dynamics is based on the governing 

partial differential equation in [22]. Since the resulting model is 

an infinite-dimensional transfer function, is further reduced to a 

finite-dimensional one, using some approximations and Taylor 

series. The resulting model is validated based on the existing 

experimental data. COMSOL Multiphysics software is used for 
coupled modal analysis of the IPMC sensor. 

The current paper is organized as follows. In section 2, the 

mathematical model for the IPMC sensor is derived. Model 

reduction is discussed in section 3. The simulation results are 

discussed in Section 4.  Finally, the conclusions are provided in 

Section 5. 

 

Figure 1. Schematic model of an IPMC strip. 

 

2. Model derivation 

Here we consider a slim cantilevered IPMC with rectangular 
cross section of thickness 2h, length L, and width b. The neutral 
axis of the beam is shown by z = 0, see Figure 2. In order to 
obtain the dynamic equation of motion we consider the effects 
that two types of damping have on the frequency response of an 
elastic structure: viscoelastic damping and damping due to the 
submergence of the structure in a viscous fluid. The main 
difference between polymers and other materials resides in the 
viscoelastic properties of the polymers. Viscoelastic material can 
be defined as the one whose stress depends on deformation rate 
[27]. The mechanical response of viscoelastic materials to 
mechanical excitation has traditionally been modeled in terms of 
elastic and viscose components such as springs and dashpots. 

Here we use kelvin-Voigt model. This model combines a spring 
and a dashpot in parallel, see Figure 3 [28]. 
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here Cv denotes the strain rate damping coefficient and Y denotes 

the Young’s modulus. 

 

Figure 2. Schematic model of a cantilever IPMC sensor. 

 

 

Figure 3. Schematic representation of the Kelvin-Voigt model. 

 

The effect of the damping can be neglected in air, but it cannot 

be neglected when the cantilever is immersed in a denser 

medium, like water. The viscous fluid damping force per unit 

length of the beam can be expressed as [8, 29] 
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were ω (rad/s) is the oscillation, w(x, t) is the transverse 
displacement, b is the width of the IPMC beam, ρf is the density 

of the fluid, and Γrect(ω) is the hydrodynamic function, ma(ω) is 

the added mass and C(ω) is the viscous fluid damping 

coefficient. The hydrodynamic function for a beam with 

rectangular cross section can be expressed as 
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where K0 and K1 are modified Bessel functions of the second 

type, ψcorr(ω) is a complex valued correction function that 

corrects the results for a beam of circular cross section to a beam 

of rectangular cross section and 
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where Re is the Reynolds number and μf is the viscosity of fluid. 

The correction function for the rectangular cross section is given 

by [30] 
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(7) 

The quantity λ is defined as 

10log eR   (8) 

Expression (3) of the hydrodynamic function can be used for a 
wide range of Reynolds numbers [30]. Considering these 

assumptions, the governing equation of motion is obtained as 

[31] 
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where η(ω) = ρmA + ma(ω), ρm is the density, A is the cross 

sectional area of IPMC and I is the area moment of inertia with 
respect to the x axis. By converting equation (9) into the Laplace 

domain we have 
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where s is the Laplace variable. Equation (10) can be rewritten as 
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where γ4(s) is 
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The general solution for equation (11) is as follows [32] 
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For the clamped-free boundary conditions, the following 

relations can be obtained. 
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By substituting the boundary conditions into (13), we get 
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As illustrated in Figure 2, an applied displacement w(t) leads 

to the generation of the sensing current i(t) due to redistribution 

of the free cations. The governing PDE which describes the 

charge density distribution ρ within the polymer membrane is 
given by [22]: 
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where d is the ionic diffusion, F is Faraday’s constant, R is the 

gas constant, T is the absolute temperature, ε is the effective 

dielectric constant of the polymer membrane, C0 is the anion 
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concentration, and ΔV is the molar volume change. By taking the 

Laplace transform for the of ρ(x, z, t), we can convert (18) into 
the frequency domain as 
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Assuming that the charge density is symmetric relative to z = 
0, the solution of (19) is obtained as 
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The following equations describe the electric field E and the 

electric potential φ. 
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With the above equations and equation (21), we can evaluate 

E(x, z, s) and φ(x, z, s) as 
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The charge density ρ(±h, z, s) inside the polymer 
membrane at the boundary z = ±h is proportional to the 
induced stress σ(±h, z, s) [33]: 

   , , , ,x h s x h s     (26) 

where α is the charge–stress coupling constant. Now we can 

relate the induced stress σ(x, h, s) to the external stimulus W(s). 

According to linear beam theory we have 
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where M is the bending moment.  Substituting the equation (16) 

in to (27) one can obtain the stress at z = h 
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Using equation (26) we can get a1(x, s) 
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Now we can obtain b1(x, s) and b2(x, s) using the short circuit 

boundary condition φ(x, h, s) ─ φ( x, -h, s) = 0. 
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By integrating the electric displacement field D = εE over the 

cross section of the beam at the z = h the total induced electric 
charge can be obtained as 
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The short-circuit current i(t) in the Laplace domain is i(s) = 

sQ(s). Finally we can achieve to the transfer function which 

relates the mechanical input w(s) to the output sensing current 

i(s) as 
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3. Reduced order model 

The resulting model in equation (33), is infinite-dimensional 

as it contains nonrational terms like sin(○), cos(○) and , etc. 

For practical implementation of the model, such as structural 

health monitoring, we aim to reduce the model to a finite order. 

First, we take 1 – C0ΔV ≈ 1 since |C0ΔV | 1. Based on the data 
listed in Table 1, for s = jω, the term 

k

d  is of the order of 1012, 

which means 
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On the other hand, due to the thickness of the sensor it can be 

concluded that 
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Equation (34) allows us to consider the following 

approximation 
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Further we can approximate the term s K using its Taylor 

series about s = 0. The following approximation can be achieved 
by considering up to the second order. 
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To simplify the second part of (32), Taylor series expansion 

for terms sin(○), cos(○), sinh(○) and cosh(○) will be used. 

Considering just the first three terms in each series leads to 

equation (39). 
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The resulting finite-dimensional approximation is 

     1 2H s H s H s   (39) 

 

4. Results and discussion 

In order to verify the obtained model, parameters in the model 

need to be identified. Some parameters in the model are physical 

constants (gas constant R and Faraday constant F) and some of 

them such as sensor dimensions, temperature T, density ρm and 

young modulus Y are directly measurable. The other parameters 
must be identified through a curve fitting process in MATLAB 

[8]. The MATLAB function fminsearch can be used to find the 

remaining parameters. This command minimizes the squared 

error between the experimental frequency response and the 

proposed model prediction. Table 1 shows the proposed model 

parameters. The frequency response of the proposed model is 
obtained for an IPMC sensor with the same dimensions, 22 × 7 × 

0.360 mm3, as used by Chen et al. [22]. By substituting s = j2πf 

in equation (32) and using MATLAB the Bode plot of the 

frequency response can be obtained. Figure 4 shows the Bode 

plot of the frequency response. As illustrated in Figure 4, there is 

a good correlation between the proposed model and experimental 
results. This indicates that the proposed model is effective in 

capturing the sensing of the IPMC. 

It is worth noting that Chen et al. [22] conducted their 

experiments in air. As the proposed model is a physical model it 

is geometrically scalable. Thus we can study the effects of 

geometrical parameters. Figure 5 shows the effect of length 
variation on the sensor’s behavior. The length variation affects 

only the magnitude and has not any effect on the phase. It also 

can be seen that as the strip gets longer the magnitude decreases. 

It means that the output sensing current decreases too. Next we 

investigate the effect of hydration level on the IPMC sensor 

behavior. Humidity variation leads to changes in diffusion 
coefficient d. Figure 6 shows and compares the predicted 

frequency response for three different diffusion coefficients d. 

 

Table 1. Model parameters 

C0
 1091 (mol/m3) 

Cv 20000(Pa.s) 

d 1.2⨯10-11 (m2/s) 

F 96487 (C/mol) [22] 

R 8.3143 (J/mol.K) [22] 

T 300 (K) [22] 

Y 571 (MPa) [22] 

ε 2.2 (mF/m) 

ρm 9159.3 (kg/m3) [22] 

α 109 (J/C) 

 

Figure 4. Comparison of the frequency response with experimental data. 

 

 

Figure 5. The effect of length variation. 

 

When the IPMC sensor is oprating in air, it faces with water 

evaporation and its hydration level decreases and the diffusion 

coefficient decreases too. Figure 7 shows the cyclic current–
displacement plot. This plot corresponds to a harmonic 

mechanical tip-displacement with peak of 1 mm and frequency of 

10 Hz. The overall behavior of the sensor in figure 7 is the same 

as figure 6, as the diffusion coefficient decreases the output 

sensing current gets smaller. 

 



Mohammad Reza Salehi Kolahi and Hossein Moeinkhah 
 

26 

 

 

Figure 6. The effect of diffusion coefficient variation. 

 

 

 

Figure 7. Current-displacement cyclic diagram. 

 

The natural frequencies of a cantilever beam submerged in a 

viscous fluid, can be obtained by the following equation [34] 

 
1

2
f

vac rect vacfluid
m

1
4

n n nb

h

 
  




 

   
 

 (40) 

where ωvac is the natural frequency in vacuum. As the IPMCs 

can be used in wet conditions and are biocompatible we 

investigate and compare their behavior in water and human blood 

as well as air. The first coupled natural frequency of the IPMC 

sensor submerged in air, deionized water and human blood is 

given in Table 2. Noting that the boundary conditions, 
geometrical and physical parameters are the same as figure 4. 

The values are captured from COMSOL Multiphysics software 

and equation (40). Table 3 summarizes the characteristics of the 

mentioned fluids. 

Table 2. Evaluation of the first coupled natural frequency (Hz) 

Fluid 
Analytical 

Eq. (40) 
FE 

Experimental 

[22] 

Air 29.975 32.013 ~30 

Deionized 
water 

18.3861 21.00 ‒ 

Human blood 17.6907 20.282 ‒ 

 

Table 3. Fluid properties of Table 2 

Fluid ρf (kg.m-3) μf (Pa.s) 

Air 1 0.0001 

Deionized water 997 0.0008 

Human blood 1125 0.004 

   The acoustics physics interface in COMSOL Multiphysics 
software can be used to compute the coupled natural frequencies 

of an elastic structure submerged in a fluid. We used a three 

dimensional geometry for simulation. It is worth noting that the 

used mesh is free triangular with 78154 elements. We selected 

this type and number of mesh after several simulations. 

According to the Table 2, there is a fine correlation between 
analytical and FE simulation results. In particular with denser 

fluid, the natural frequency is lower. The changes in the natural 

frequency values enable us to realize resonant sensors. Now we 

investigate the effect of the surrounding fluid on the sensors 

frequency response. Figure 8 shows and compares the frequency 

response of the sensor submerged in three different mediums. It 
is clear that the effect of the surrounding fluid cannot be 

neglected specially for the vibrating frequencies more than 1 Hz. 

 

Figure 8. Comparison of the frequency response for three different mediums. 

 

For some sensing applications like structural health 

monitoring (SHM), our aim is to reconstruct the original 

mechanical signal u(t) based on the output sensing current i(t). 

The reconstructed mechanical signal can be achieved by 

inverting the reduced order model. 

 

   
inv

1W s
H

I s H s
   (41) 
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It shows also the wide applicability of the proposed model. 

Figures 9 to 11 show the reconstructed signal for three different 

sensing currents. Figure 9 shows a smooth step excitation leads 

to a sensing current which rises to a peak value and then 

decreases to zero. For figures 10 and 11 reconstructed signal and 

sensing current are similar. It means a decay oscillatory 
excitation leads to a decay oscillatory current and a multitone 

oscillatory excitation leads to a multitone oscillatory current. 

 

5. Conclusions 

In current paper a theoretical model which is physics-based, is 

proposed to simulate the mechano-electrical response of IPMC 

sensors. Moreover, the model accommodates the effect of the 

surrounding fluid on the IPMC sensing. Since the original model 

is an infinite-dimensional transfer function, it is not suitable for 
some applications. Further the order of the original model is 

reduced and converted to a rational transfer function. It is shown 

that the resulting model has a fine correlation with the existing 

experimental data. 

More the effect of various parameters investigated. The results 

showed that as the sensor gets longer, the output sensing current 
gets smaller. Results also depicted that decreasing the hydration 

level leads to reduction of output sensing current. It has also been 

observed that the effect of the surrounding fluid cannot be 

neglected. We used acoustics physics interface in COMSOL 

Multiphysics software for modal analysis. Results showed that 

the IPMCs natural frequency differs from one medium to 
another. This change enables one to use IPMC sensors as 

resonant sensors. On the other hand the reduced order model 

enables one to use IPMC sensors for structural health monitoring, 

especially for underwater structures. 

The results of this paper could be of interest in a number of 

applications. In fact, it is possible to use the proposed model as a 
project tool for designing sensors. Future work will involve the 

effects of the time varying temperature on the sensors behavior. It 

is also possible to consider the surface electrode resistance into to 

the modeling approach. 

 

 

(a) 

 

(b) 

 

Figure 9. Desired sensing current (a), reconstructed signal: step excitation 

(b). 

 

(a) 

 

(b) 

 

Figure 10. Desired sensing current (a), reconstructed signal: decay oscillatory 

excitation (b). 

(a) 
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(b) 

 

Figure 11. Desired sensing current (a), reconstructed signal: multitone 

oscillatory excitation (b). 
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