[1] L. Pochhamer, Uber die Fortpflanzzungsgeshwindigkeiten kleiner Schwingungen in einem unbergrenzten isotropen Kreiscylinder, Zeitschrift fur Mathematik., Vol. 81, pp. 324, 1876.
[2] C. Chree, The equations of an isotropic elastic solid in polar and cylindrical co-ordinates their solution and application, Transactions of the Cambridge Philosophical Society, Vol. 14, pp. 250, 1889.
[3] A. E. H. Love, 1906, A treatise on the mathematical theory of elasticity, at the University Press,
[4] H.-S. Shen, 2016, Functionally graded materials: nonlinear analysis of plates and shells, CRC press,
[5] A. Berezovski, J. Engelbrecht, G. A. Maugin, Numerical simulation of two-dimensional wave propagation in functionally graded materials, European Journal of Mechanics-A/Solids, Vol. 22, No. 2, pp. 257-265, 2003.
[6] R. M. Mahamood, E. T. Akinlabi, M. Shukla, S. Pityana, Functionally graded material: an overview, 2012.
[7] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[8] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
[9] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[10] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.
[11] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018.
[12] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[13] M. Zamani Nejad, A. Rastgoo, A. Hadi, Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique, Journal of Solid Mechanics, Vol. 6, No. 4, pp. 366-377, 2014.
[14] M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017.
[15] A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, 2020.
[16] M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018.
[17] R. Noroozi, A. Barati, A. Kazemi, S. Norouzi, A. Hadi, Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity, Advances in Nano Research, Vol. 8, No. 1, pp. 13-24, 2020.
[18] T.-C. Chiu, F. Erdogan, One-dimensional wave propagation in a functionally graded elastic medium, Journal of Sound and Vibration, Vol. 222, No. 3, pp. 453-487, 1999.
[19] S.-H. Chi, Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis, International Journal of Solids and Structures, Vol. 43, No. 13, pp. 3657-3674, 2006.
[20] S.-H. Chi, Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load—Part II: Numerical results, International Journal of Solids and Structures, Vol. 43, No. 13, pp. 3675-3691, 2006.
[21] M. Dorduncu, M. K. Apalak, H. Cherukuri, Elastic wave propagation in functionally graded circular cylinders, Composites Part B: Engineering, Vol. 73, pp. 35-48, 2015.
[22] L. Elmaimouni, J. Lefebvre, V. Zhang, T. Gryba, Guided waves in radially graded cylinders: a polynomial approach, Ndt & E International, Vol. 38, No. 5, pp. 344-353, 2005.
[23] M. Dorduncu, M. K. Apalak, Stress wave propagation in adhesively bonded functionally graded circular cylinders, Journal of Adhesion Science and Technology, Vol. 30, No. 12, pp. 1281-1309, 2016.
[24] J. Vollmann, D. M. Profunser, J. Bryner, J. Dual, Elastodynamic wave propagation in graded materials: simulations, experiments, phenomena, and applications, Ultrasonics, Vol. 44, pp. e1215-e1221, 2006.
[25] D. Sun, S.-N. Luo, Wave propagation and transient response of a FGM plate under a point impact load based on higher-order shear deformation theory, Composite Structures, Vol. 93, No. 5, pp. 1474-1484, 2011.
[26] K. Asemi, M. Akhlaghi, M. Salehi, Dynamic analysis of thick short length FGM cylinders, Meccanica, Vol. 47, No. 6, pp. 1441-1453, 2012.
[27] M. Shakeri, M. Akhlaghi, S. Hoseini, Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder, Composite structures, Vol. 76, No. 1-2, pp. 174-181, 2006.
[28] J. Yu, X. Yang, J. Lefebvre, C. Zhang, Wave propagation in graded rings with rectangular cross-sections, Wave Motion, Vol. 52, pp. 160-170, 2015.
[29] M. Asgari, Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory, Journal of Theoretical and Applied Mechanics, Vol. 45, No. 2, pp. 3-20, 2015.
[30] M. Asgari, Material optimization of functionally graded heterogeneous cylinder for wave propagation, Journal of Composite Materials, Vol. 50, No. 25, pp. 3525-3528, 2016.
[31] H. R. Hamidzadeh, R. N. Jazar, 2010, Vibrations of thick cylindrical structures, Springer,
[32] S. Xie, K. Liu, Transient torsional wave propagation in a transversely isotropic tube, Archive of Applied Mechanics, Vol. 68, No. 9, pp. 589-596, 1998.
[33] H. Cherukuri, T. Shawki, A finite‐difference scheme for elastic wave propagation in a circular disk, The Journal of the Acoustical Society of America, Vol. 100, No. 4, pp. 2139-2155, 1996.
[34] W. Johnson, 1983, Impact strength of materials.