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1. Introduction 

The torsional wave propagates in rotating machines when an 

unbalancing or unwanted torque is applied. For example, the 

axels of vehicles or trains in crossing a bump or rotating shafts 

of helicopters when smashing with a projectile may be affected 

by a torsional wave. For the first time in the 19th century, the 

propagation of elastic waves was introduced by Navier. 

Torsional waves are a type of elastic waves that have been less 

attention by researchers. The problem of finding torsional 

vibration responses to structures with circular cross-section 
was first studied by Pochhammer [1] in 1876 and Chree [2] in 

1889. After that, In 1906, Love [3] compiled Pochhammer 's 

articles on torsional vibration in a summary language. Then the 

interest in torsional vibrations became an important issue in the 

field of engineering. The analysis of torsional waves in rotating 

machine systems is important for the safety and reliability of 

the system. Excessive torsional vibrations cause severe 

deformation and even failures. With advances in science and 

technology, composites were introduced to make parts under 

mechanical stresses to exhibit better resistance to impact, 

deformation and failure. But composites are not considered to 

be a good material against mechanical and thermal stress 
because of their layered structures. So due to this weakness, 

new materials were introduced as functionally graded 

materials. This new materials are a type of composite whose 

properties are continuously changing [4, 5] . This change in 

properties according to the designer's requirements can be 
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defined in any direction of material. In the cylindrical bodies, 

it is usually defined in the radial or axial direction. Due to the 

unique performance of functionally graded materials in dealing 

with mechanical and thermal stresses, today they are used in 

many industries such as nuclear, military, aerospace and 

automotive [6]. Therefore, due to the increasing use of this type 

of new material in important industries, the analysis of wave 

propagation in FG materials is important. While most 
researchers focus on reducing thermal stress in FG materials, 

limited studies have been conducted on the propagation of 

waves in FG materials by analytical and numerical methods. 

FG materials have been studied from different view point 

in science such as thermal, buckling and vibration in 

mechanical application size and nanotubes [7-17]. 

Furthermore, in the field of impact and wave stress propagation 

a lot of researchers pay attention to FGMs. Chio and Erdogan 

[18] studied the propagation of wave in the FGM plate 

consisting of SiC and Al. Their simulation was a one-

dimensional wave propagation and the properties of plate 

changed in the direction of thickness. Their work was based on 
the using Laplace transform technique with various boundary 

conditions. Shyang-Ho and Yen-Ling [19, 20] obtained the 

analytical response of the transverse wave propagation by finite 

element method for the functionally graded plate. Also, the 

properties of this FG plate are defined by power-law, sigmoid, 

or exponential functions. Mehmet Dorduncu et al. [21] 

investigates wave propagation in the functionally graded 
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circular cylinder subjected to dynamic loads. The method used 

in this study is the finite difference method. The functionally 

graded cylinder is composed of metal and ceramic, and its 

properties are defined according to the power-law in the 

thickness direction. In this work, displacement diagrams, 
normal stresses and shear stresses have been analyzed for 

different situations. Elmaimouni et al. [22] devised a different 

method for investigating the propagation of waves in graded 

structures. The basis of their method was based on Legendre 

polynomials and the properties of functionally graded materials 

are assumed to vary in the direction of the thickness according 

to a known radial variation law. Assuming the harmonicity of 

the wave and the use of orthonormality properties, the equation 

of motion has become an eigenvalue problem. Dorduncu and 

Apalak [23] studied governing equations of the wave 

propagation in the functionally graded cylinder by a finite 

difference method. The top surface of the FG cylinder is pure 
silicon carbide and the bottom surface is pure aluminum. The 

material properties vary in the thickness direction and defined 

by P-FGM power function law. Also, in this study, the volume 

fractional equations are defined by the Mori-Tanaka scheme. 

Vollmann et al. [24] examined wave propagation in a two-

dimensional functionally graded structure. This FG structure 

was made of aluminum and gold. The method used to obtain 

the displacement components of this FG structure was finite 

difference method. Sun and Leo [25] Used the Hamilton 

principle and High-order shear deformation plate theory and 

studied the infinite functionally graded plate subjected to a 
point impact. Asemi et al. [26] Using Finite element method 

based on Rayleigh-Ritz energy and studied a cylinder made of 

functionally graded materials under impact loading. In this 

study, the stress, natural frequency and displacement are 

discussed. Shakeri et al. [27] the thick hollow cylinders of FG 

materials under the axial loading has been investigated. The 

equations of motion are solved using Galerkin finite element 

and Newmark methods. Also, the power law functions are used 

to determine the properties of functionally graded cylinders. Yu 

et al. [28] studied the wave propagation in a two-dimensional 

structure of FG material. The method used in this study is an 

orthogonal polynomial series. The intended structure is a ring 
with cross-sections that has two type of this ring: Material 

properties changes in radial direction and material properties 

changes in axial direction.  Stress and displacement profiles are 

plotted and analyzed for two different modes. 

In this paper, the torsional wave propagation in a rod is 

investigated. The main purpose of doing this research is 

studying the effect of material distribution with varying 

properties in torsional wave behavior. For this aim, firstly a 

long rod is considered and the governing equation of motion in 

cylindrical coordinate are derived for this rod. The material 

properties are assumed to be varying in radial direction. In this 
section, Ti6A14V and Al2O3 are considered as composed 

materials and for different distribution (ceramic rich or metal 

rich), the stress, strain and displacement of particles are 

researched. 

Secondly, it’s supposed the changes of material properties 

occur in radial and length direction. For this goal, we have two 

use four material that their dispensation is follow the 2D FGM 

volume fractions function. BN, Al 1100, Ti6A14V and Al2O3 

(two ceramic and two metal) are the materials that chosen. In 

this section, the influence of permutation of material in elastic 

behavior of rod (stress, strain and displacement) and wave 

propagation are studied. 

The main novelty of this research is studying the torsional 

wave propagation in FGM rod. As mentioned later, it can be 

used practically in manufacturing of axels of trains or vehicles 
and also other rotating shafts in centrifuges of nuclear 

applications, power plants, helicopters and aerospace industry 

and military devices. By using FGM rods and shafts, we can 

guide the stress waves to the favorite part of rod and reduce the 

risk of failure.   

2. Basic equation 

Functionally graded materials, due to their properties, can 

reduce the mechanical and thermal stresses of structures. So the 

properties of these materials are very important. In the 

following, we explain the distribution of properties of the FG 

rod in one-dimensional and two-dimensional states. 

2.1. One-Dimensional FG rod 

A functionally graded rod with a radius R is considered. It is 

assumed that the changes in the properties of the desired rod in the 

direction of radial occurred. The materials intended for this rod are 

ceramic and metal. In the distance between the center of the rod 
and the external surface of the FG rod (rod radius), the properties 

are determined according to the following equation [24]: 

 
n

m c c

R r
P P P P

R

 
   

 
 (1) 

 

which P can be any material properties such as density, young 

modulus, and etc. The volume fraction of the material, n  is also 

non-negative. Subscript m and c  related to ceramics and 

metal. 

As is clear from Equation (1) when r R , the properties of 

the FG rod are equal to the pure ceramic properties, that's 

mean cP P   and when 0r  ,  the properties of the FG rod 

are equal to the properties of the pure metal, that's mean 

mP P  . 
 

2.2. Tow-Dimensional FG rod 

The two-dimensional FG rod discussed in this study consists of 

several gradient phases. This means that the functionally graded 
rod consists of 4 different materials, as shown in Figure 1, the two 

ceramics used in this rod ( 1c and 2c ) and the other two metals are 

( 1m and 2m ). Due to the volume fractions defined for this 

functionally graded rod, material properties are defined in two 

dimensions and 1cV ، 2cV ، 1mV و 2mV denote volume fractions of the 

first ceramic, second ceramic, first metal and the second metal 
,respectively. 

Due to the distribution of properties of materials in Fig. 1, the 
volume fraction of each of the elements used in the FG rod can 

be obtained from the following relationship [29]: 

1

2

( , ) 1 1

( , )

r z

r z

n n

m

n n

m

r z
V r z

R L

r z
V r z

R L

      
        

         

      
       

         
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 (2) 

 
Figure 1. Functionally graded rod composed of four different materials 

 

For the use of volume fractions, the following rules should be 
observed [30]: 

 

2.2.1.   Firs t  rule 

The sum of all fractions of volumes should be equal to one, that 

is: 

1 2 1 2 1Vc Vc Vm Vm     (3) 

 

2.2.2.  Second rule 

The maximum value of each volume fraction must not exceed 

one and the minimum value must not be less than zero, that is: 

1

2

1

2

0 1

0 1

0 1

0 1

Vc

Vc

Vm

Vm

 

 

 

 

 (4) 

2.3. Equations of motion 

 The cylindrical coordinate system  , ,r z  is assumed to simulate 

the stress wave propagation in FG rod. The equations of motion in 
terms of stress components are given by [31]: 

2

2

1 r rrrr rz
T T TT T u

r z r r t

  


   
   

   
 (5) 

 

2

2

21 z r rT T T T v

r z r r t

    


   
   

   
 (6) 

 

2

2

1 zzz rz rz
TT T T w

z r r r t

 


  
   

   
 (7) 

 

Equations (5) to (7) be called equations of motion in 3D 

cylindrical coordinates, also known as Navier's equations. u , v , 

w are radial, angular and axial displacements, Respectively. 

So, the rod is defined by the following equation: 

0

0 2

0

r R

z Z

 

 

 

 

 (8) 

The components of stress in terms of displacement are written 

as follows [31]: 

 

 

 

1
2

1
2

1
2
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T
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T
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  


  


     
       

     

     
       

     

     
       
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(9) 

The properties of the elastic medium are given by the two Lamé 

constants  z   and  z  . 

Now, Substituting Eq. (9) into equations (5) to (7) yields 

   

 

   

 

2 2

2 2 2 2
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   


 

  
     

 

 
  



 
   
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
 



 (10) 
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 

   


  
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  

  
   
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 (11) 
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1
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w u w

r r r z r

    

  
 

   

  
   

 

 
  

  

  
   

   

 (12) 

For a torsional wave, according to the symmetry 

characteristics, radial, angular and axial displacement vectors are 

defined as follows [32]. 
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0,

( , , ),

0

u

v v r z t

w







 (13) 

Therefore, only the nonzero equation of motion, regardless of 

the body forces, is obtained for the torsion wave as follows: 

2 2 2

2 2 2 2

1 1v v v v
v

r rt r z r
    
   

    
  

 

 

(14) 

The Von Neumman stability criterion is used to determine the 

time step size as follow[26]: 

2

2

1

5

4

r t
t and

zr
q

z

 
  

 
  

 

 
 

Where q is the ratio of shear stress wave velocity to 

longitudinal stress wave propagation velocity in material. 

 

2.4. Boundary condition and initial condition 

At t = 0, the following initial conditions are considered:  

It is assumed that at the instant t = 0 there is no stress in the FG 

rod, so: 

0r zT T    (15) 

It is also assumed at this moment there is no displacement in 

functionally graded rod: 

( , , ) 0v r z t   (16) 

The governing boundary conditions on the problem are also 

assumed: 

zT M    0Z   

(17) 
0rT     r R  

In the previous equation, M is defined as: 

   0 0M M H t H t t      (18) 

The applied load on the FG rod as a pulse is shown in Fig. 2: 

 
Figure 2. Time variation of the applied Torque 

 

Which the value of t0 is 40 microseconds and
0M is equal to 1000 

Newton meters. Also  H t  is a Heaviside function. 

3. Finite difference implementation 

This method is based on the Taylor expansion and the simple 
application of derivative definition. In short, in explaining this 

method, the space studied is completely networked with equal 

distances. After that, all space is introduced by the points created. 

Then, by introducing boundary conditions and initial conditions, 

properties of all points will be obtained. In general, there are two 

explicit and implicit methods for solving differential equations 
using finite difference methods. In the explicit method, using the 

data of the previous points in the grid, the properties of next points 

are calculated, but in the implicit method, the equations for the past 

and future times are solved in order to calculate the data of the 

present. In order to solve the wave equation in this research, the 

explicit method of central differential approximation is used. 

3.1. Approximation of the central difference method 

First, we make the following important statement about the 
derivatives of partial differential equations: 

Derivatives in the partial differential equation are approximated 

using the linear combination of function values in the network 

points. 

 

Figure 3. A domain grid for specific interval 0 to X 

 

Using derivative fundamental definition and according to Fig. 

3, the first derivative of the first order for the hypothesized 

function is computed as follows: 

 
   

   

   

0

0

0

lim

lim

lim
2

x

x

x

u x x u xu
x

x x

u x u x x

x

u x x u x x

x

 

 

 

  


 

 




   




 (19) 

Using the definition of Eq. (19) for the second-order derivative, 

we have: 

 

1 1
2

2 0

1 1

20

lim

2
lim

i i i i

x

i i i

x

u u u u

u u x x

x x xx

u u u

x

 

 

 

 

 


          
     

 




 (20) 

Equations (19) and (20) are calculated for the hypothesized 

function  iu x  and to the hypothetical point. Therefore, since in 

the finite difference method, the time interval is also regular 

networking, the time derivative of the desired function can be 

calculated in the same way. 

The centered-difference equations of the second-order derivatives 

of a displacement component, such as ( , , )v r z t  at the nodal  ,i j

with respect to time t is given by [33] 
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 

1 12
, , ,

2 2

2k k k

i j i j i jv v vv

t t

  


 
 (21) 

t the size of the time interval, k  refers to the time index and ,i j  

the position of the points in the network are indicated. 

The finite difference equations of the first- and second-order 

derivatives of the displacement component ( , , )v r z t at the node

 ,i j with respect to the spatial variables r and z are shown in Eq. 

(22):  

1, 1,

, 1 , 1
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
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By placing the equations (21) and (22) in equation (14), the 

equation of 2-D torsional wave propagation in functionally graded 

rod in the case of finite difference equation obtained 

     
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idr r r
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 

 

   

      
     
       

     
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(2

3) 

4. Problem description 

To study the torsional wave propagation relations in a circular 

rod made of functionally graded material, hollow cylindrical cross-

sectional are considered. The cylindrical coordinates including r in 

the radial direction, θ in the angular direction, and z in the 

longitudinal direction of the cylinder are shown in Fig. 4. 

 
Figure 4. The structure of the FG rod 

 

Since the condition of the equations is axial symmetry, we will 

separate and distinguish the specified ABCD page in Fig. 5. 

Obviously, all conditions in this case are symmetrical to the central 

axis. In Fig. 5, the page along with the points M, N, P and Q that 
are shown for the getting data and comparison of the results. 

 
Figure 5. Selected points for the getting data in the FG rod 

 

This rod is being tested under various states in order to ensure 

the accuracy of the results obtained. 

4.1. State 1 

In the first state, in order to ensure the accuracy of the results, 
it is assumed that the rod is composed of an isotropic material. The 

isotropic conditions in the material are obtained by setting the 

value n = 0 in Eq. (1). 

In this case, the dimension of the rod and the problem 

conditions is considered as shown in Table 1. 

Table 1. Dimension and the problem condition of the rod in 

state 1 

L(mm) R1(mm) R2(mm) M0(N.m) T(s) t0(s)  

150 5 15 1000 300 40 State1 

 

The material used in this case is Ti6A14V, which is due to the 

insertion of a zero value in the Eq. (1), the desired rod is assumed 

to be isotropic. Then, the results obtained from the governing 

equations by the finite difference method that will be compared 

with the analytical results of a one-dimensional wave propagation. 

The mechanical properties of the Ti6A14V are as follows: 

Table 2. Properties of Ti6A14V 

Material E (Gpa) 𝜌(
𝑘𝑔

𝑚3
) 𝜗 

Ti6A14V 120 4515 0.31 

 

The coordinates of the M, N, P, and Q points that are selected 

for the getting data in this state are as follows: 

Table 3. Selected points for the getting data in state 1 
Q P N M  

5 15 5 15 R(mm) 

140 140 10 10 Z(mm) 

 
4.2. State 2 

In this state, it is assumed that the change of properties occurs 

only in the direction of radius. As a result, the functionally graded 
rod is composed of two different materials, the inner part being 

pure from material 1 and the outer part is pure from material 2, so 

changing properties occurs in the radial direction. Changing 

Properties for different values of n are considered to be 1 (linear 

mode), 0.1 and 10. The dimensions, applied torque, pulse time and 

the coordinates of the data points are considered similar to the first 
one, as shown in Tables 1 and 3. The properties of the materials 

used in this case are given in the following Table 4. 
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Table 4. Material properties in state 2 

Constituents Material E (Gpa) 𝜌(
𝑘𝑔

𝑚3
) 𝜗 

2m  Ti6A14V 120 4515 0.31 

1c  Al2O3 150 3470 0.21 

 

It should be noted that the changes in this state for the first 

specimen, assuming that the inner part of the rod is from the metal 
and the outer part of the ceramic, and then for the second specimen, 

assuming that the inner part of the ceramic and the outer part of 

the metal be studied. 

4.3. State 3 

In the third state it is assumed that the changing properties occur 

both in the radial direction and in the longitudinal direction. In this 

case, the dimension of the rode is as follows: 

Table 5. Dimension and the problem condition of the rod in 
state 3 

L(mm) R1(mm) R2(mm) M0(N.m) T(μs) t0(s)  

150 10 50 1000 100 40 State 3 

 

The coordinates of the M, N, P, and Q points that are selected 

for the getting data in this state are as follows: 

Table 6. Selected points for the getting data in state 3 
Q P N M  

10 50 10 50 R(mm) 

90 90 10 10 Z(mm) 

 
The properties of materials used to model two-dimensional 

FGM rod are given in the following table: 

Table 7. Material properties in state 3 

Constituents Material E (Gpa) 𝜌(
𝑘𝑔

𝑚3
) 𝜗 

1m  Al 1100 75 2715 0.33 

2m  Ti6A14V 120 4515 0.31 

2c  BN 675 2100 0.27 

1c  Al2O3 150 3470 0.21 

The distribution of materials according to the naming in the 
Figure 5 is shown in the table 8: 

Table 8. Distribution of materials for four different Model 

Point D Point C Point B Point A  

M2 C2 M1 C1 Model 1 
C2 M2 C1 M1 Model 2 
M1 C1 M2 C2 Model 3 
C1 M1 C2 M2 Model 4 

 

It should be noted that in the above table, the equations are 

considered only for the n = 1 (linear distribution). 

5. Numerical result 

5.1. State 1: isotropic rod 

According to the torsion theory, it is expected that the stress and 

strain in the , , , ,rr r rz zz      and , , , ,rr r rz zz       

directions are equal to zero and only the non-zero stress and non-

zero strain will occur in the z  direction. As shown in Fig. 6 and 

7, the stresses , , , ,rr r rz zz       are negligible than stress. In 

Fig. 6, considering the properties of the material as a change in one 
dimension, the maximum stress value associated with the point P 

on the outer radius and the lowest stress in this case, occurred in 
the point N, which is on the inner radius. In order to ensure the 

obtained equations and Figures, the stress values at M, N, P, and 
Q points are calculated using the one-dimensional wave theory, 

which is analyzed analytically by the d'Alembert method in [34] 
,and with the results obtained in this research is compared in Fig. 

8. 
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Figure 6. Distributions of the shear stress component, 

z  In terms of time 

for the points M, N, P and Q in isotropic mode 
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Figure 7. Distributions of the stress components , , , ,rr r rz zz       

In terms of time for the points (a)M, (b)N, (c)P, (d)Q in isotropic mode 

 

As expected, at M and P points, the stress values are larger than 
N and Q, and there is also a good fit between the results in terms 

of validation. Regarding the interference of propagated waves and 

the complexity of the analytic equations, numerical and analytical 

results are compared with once the wave flux. In this case, the 

wave completely passes through the points M and N, and after the 

wave reaches the end of the rod, the return wave goes back into 
the rod and causes the wave pulse to be shortened at points P and 

Q, because Due to the proximity of the points above to the end of 

the rod, moments after passing the passing wave, the return wave 

reaches the desired points and neutralizes the stresses. The strain 

values in this study are directly related to stress values and have 

similar behavior to stress behavior.
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(c) 

 
(d) 

Figure 8. Validation of stress value at points (a)M, (b)N, (c)P, (d)Q for isotropic rod 
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Figure 9. Distributions of the strain components , , , ,rr r rz zz       In terms of time for the points (a)M, (b)N, (c)P, (d)Q in isotropic mode 
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As shown in Figures 9 and 10, the strain values , , , ,rr r rz zz      are much less than
z . In this case, in Fig. 10, the maximum strain 

value at the point P and the lowest strain value occurred at the point N. As it was proved in the previous chapter, it is expected that the 

amount of radial displacement in most other directions, or in other words, in non-radial directions, has a zero-displacement value, but due 
to computational errors, as well As seen from Fig. 11, the displacement values in r and z are non-zero. However, in comparison with the 

amount of displacement in radial direction, they are smaller and can be neglected. Fig. 11 shows the displacement-time diagrams in 
isotropic rode. 

time (micro second)

0 50 100 150 200 250 300 350

s
tr

a
in

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

M

N

P

Q

 
Figure 10. Distributions of the shear strain component, 

z  In terms of time for the points M, N, P and Q in isotropic mode 
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(c) 

Figure 11. Distributions of the displacement components (a) u ,(b) 

v ,(c) w  In terms of time for the points M, N, P and Q in isotropic mode 

 

 
As shown in Fig. 11, the maximum displacement value is initially 

related to the v displacement chart, then u  and w  displacements 

chart, respectively. 

Note: Due to the fact that the stresses , , , ,rr r rz zz      and 

strains , , , ,rr r rz zz       are very smaller than z and z , so 

they are neglected and in the following, they have been 
discarded. 

5.2. State 2: FGM rod with one-dimensional distribution of 
materials 

As already mentioned, the 2nd state is divided into two parts: 

the first specimen, assuming that the inner part of the FG rod is of 

metal and the outer part of the ceramic, and then the second 

specimen, assuming that the inner part of the ceramic and the outer 

part of the Metal is considered. 
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5.2.1.  Firs t  specimen 

In this case, the inner part of FG rod is made of Ti6A14V and the 
outer part of the Al2O3. To analyze this specimen, three modes 

have been used: 

When 1n  : In this mode, the internal part of the Ti6A14V and 

the outer part of Al2O3 are actually formed and the properties in 
the radial direction are changed linearly. 

When 0.1n  : In this mode, the internal part of Ti6A14V and the 

outer part of Al2O3, but the changing properties are such that 

within a short distance from the inner radius, Ti6A14V is rapidly 
reduced and most parts of the rode composed form Al2O3, 

actually. 

When 10n  : The structure of the rod in this mode is the same as 

in the previous two modes, but the changes in properties are such 
that at a short distance from the outer radius of the rod, the Al2O3 

value decreases rapidly, and the dominant part of the rod is 
displaced by Ti6A14V. 

The following Figure of stress variations in time are given for this 
specimen: 

 

 

time (micro second)

0 50 100 150 200 250 300 350

s
tr

e
s
s
(M

P
a
)

-200

-100

0

100

200

300

n=0.1

n=1

n=10

 
(a) 

 

 

time (micro second)

0 50 100 150 200 250 300 350

S
tr

e
s
s
(M

P
a
)

-100

-80

-60

-40

-20

0

20

40

60

80

100
n=0.1

n=1

n=10

 
(b) 

time (micro second)

0 50 100 150 200 250 300 350

S
tr

e
s
s
(M

P
a
)

-300

-200

-100

0

100

200

300

n=0.1

n=1

n=10

 
(c) 

time (micro second)

0 50 100 150 200 250 300 350

S
tr

e
s
s
(M

P
a
)

-100

-80

-60

-40

-20

0

20

40

60

80

100

n=0.1

n=1

n=10

 
(d) 

Figure 12. Distributions of the shear stress component
z  In terms of 

time for the points (a)M,(b) N,(c) P and (d)Q for the compositional 

gradient exponents 𝑛 = 0.1,1,10 for first specimen 

 

As shown in Fig. 12, the maximum stress value in this case is 
related to points M and P, and the lowest stress are related to points 

N and Q. Also, in all points, the maximum stress is in the mode

0.1n  and the least stress is in the mode 10n  . Another 

noteworthy point is that, since in state 2, the changing of the 
properties have been taken in the form of a one dimensional and in 

radial direction, it can be said that the variation of stress in points 
that are located on the same radius is approximately equal, then 

the points M And P, as well as the two point N and Q that are on a 
radius, will experience almost identical variations in this state. 

Also, as shown in Figure 13, the strain variation in time charts are 
plotted for the first specimen for three modes, separated by four 

points M, N, P and Q: 
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(d) 

Figure 13. Distributions of the shear strain component z  In terms of 

time for the points (a)M,(b) N,(c) P and (d)Q for the compositional 

gradient exponents 𝑛 = 0.1,1,10 for first specimen 

 

Since strain values are directly related to stress values in this study, 
in the strain variation charts, the maximum strain values are related 

to the points M and P. also due to the unidirectional changes in rod 
properties, these two points experience the same variation of strain 

in this case. On the other hand, the points N and Q also have 
roughly identical variations in the strain values in this case. In all 

four points, the highest rate of strain variation is related to the 

0.1n   and the lowest rate of change is also related to the 10n 
. 

In the following, displacement variation in time charts are 

plotted for 0.1,1,10n  , separated by points M, N, P, and Q. 
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(d) 

Figure 14. Distributions of the displacement component v  In terms of 

time for the points (a)M,(b) N,(c) P and (d)Q for the compositional 

gradient exponents 𝑛 = 0.1,1,10 for first specimen 

In Fig. 14, the maximum value of displacement relative to the 

points M and P is 3 millimeter and the minimum value of 
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displacement is related to the points N and Q is approximately 1.2 

millimeter. Another point is that the displacement chart has almost 
the same behavior at all four points. 

5.2.2.  Second specimen 

In the second specimen, as in the first specimen, the FG rod is 

made of two materials of ceramic and metal, and the changes of 
properties are in one direction. In this case, the inner part of the 

FG rod is made of Al2O3 and the outer part of the Ti6A14V. For 
analysis of the second specimen, the following three modes are 

used: 

When 1n  : In this mode, the inside of the functionally graded 

rod is made of Al2O3 and the external part of FG rod compose of 

the Ti6A14V. Also, the changing properties will be linear. 

When 0.1n  : In this case, the internal and external portions of 

the FG rod are composed of Al2O3 and Ti6A14V, respectively. 
The changes in properties are such that, at a short distance from 

the internal radius, the amount of Al2O3 decreases and most of the 
properties of material are dedicated to the Ti6A14V. 

When 10n  : This mode like the two previous modes, consists 

of both Al2O3 and Ti6A14V for the internal and external sections 
of the FG rod, respectively. Also, the dominant part of the rod in 

this section is Al2O3. Stress variation charts are plotted in time for 
the second specimen for three modes, separated by four points M, 

N, P and Q: 
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(d) 

Figure 15. Distributions of the shear stress component
z  In terms 

of time for the points (a)M,(b) N,(c) P and (d)Q for the compositional 

gradient exponents 𝑛 = 0.1,1,10 for second specimen 

In Fig. 15, it is observed that the maximum stresses occur at 

the points M and P and minimum stresses occur at points N and Q. 

In all of the points, the highest stress rate related to the 10n   and 

the lowest stress rate is related to the state 0.1n  . Because the 

distribution of material properties in this case is one-dimensional, 

then the points that are on a radius, have approximately the same 
variation. By comparing Figures 12 and 15, it is shown that when 

the inner part of the functionally graded rod is Ti6A14V,the 

maximum stress occurred in mode 0.1n  and also when the inner 

part of the FG rod is Al2O3, the maximum stress occurred in mode

10n  . In general, and in comparison, the maximum stresses of 

the points M and P in the second specimen and the maximum 
stresses of the N and Q points occurred in the first specimen. In 

the following, the strain variation charts are plotted in time for the 

second specimen for three modes 0.1,1,10n  , separated by four 

points M, N, P and Q. 
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(d) 

Figure 16. Distributions of the shear strain component
z  In terms of 

time for the points (a)M,(b) N,(c) P and (d)Q for the compositional 

gradient exponents 𝑛 = 0.1,1,10 for second specimen 

 

 
Fig. 16 shows strain variations at points M, N, P, and Q in three 

modes. The maximum strain rate occurred at the points M and P. 
At all four points, the highest amount of variation in the state

10n   and the lowest amount of change occurred in state

0.1n  . By comparing the strain charts in the first and second 

specimen, it is shown that in the first specimen, due to the fact 
that the inner part of the FG rod is composed of Ti6A14V, the 

maximum strain variation occurs in the 0.1n  , and in the 

second specimen because The internal part of the FG rod made 

from Al2O3, the highest value of strain variation at all four 

points occurs in the 10n  . 

The displacement charts are plotted for 0.1,1,10n  and the 

separation of points M, N, P, and Q in Figure 17. 

 
In Fig. 17, it is expected that the maximum displacement occurs at 

the points M and N, and then in this case, the N and Q points have 
a lower displacement rate. By comparing the first and second 

specimen, it is shown that in the first specimen and at all four 

points, the highest amount of displacement occurs in the 10n  . 

For the second specimen and at all four points, the highest rate of 

displacement occurred in the 0.1n  . 
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Figure 17. Distributions of the displacement component v  In terms of 

time for the points (a) M,(b) N,(c) P and (d)Q for the compositional 

gradient exponents 𝑛 = 0.1,1,10 for second specimen 

 

 
5.3. State 3: FGM rod with two-dimensional distribution of 
materials 

In this section, an FG rod with two-dimensional distribution of 

material has been studied. In state 3, the FG rod consists of four 

materials, two ceramic and two metal. Also, to study the effects of 
the properties of the ingredients, according to Fig. 5 and Table 8, 

four models of the FG rod are made with two-dimensional 

distribution of the materials mentioned. At first, the stress changes 

at the points M, N, P and Q were investigated and analyzed for the 

four mentioned models. Fig. 18, shows the variation chart of the 

stress rate in this state: 

With respect to Fig. 18, it is shown that, as expected, the highest 

stresses were at points P and M and the lowest stresses occurred at 

points N and Q. Also, in each of the four-point, model 3 has the 

lowest value of stress. In points M and P, the highest stress is 

related to the second model, at the N and Q points in this case, the 

highest stress is related to model 4. The remarkable point in this 
case is that, unlike previous states, because in this case the 

distribution of properties of materials is in two dimensions, then 

the variation of stress in points that are located on a radius is not 

the same (points M and P and points N and Q). 
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(d) 

Figure 18. Distributions of the shear stress component
z  In terms of 

time for the points (a) M, (b) N, (c) P and (d)Q for four models in state 3 

 

Then, we analyzed the charts of the strain variations in time for 

4 models and in four points M, N, P and Q in Fig. 19. 
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(d) 

Figure 19. Distributions of the shear strain component
z  In terms of 

time for the points (a)M, (b) N, (c) P and (d)Q for four models in state 3 

 

In Fig. 19, we can say that the maximum strain value in this 

case is at the point M and in the model 2. Also, the lowest strain 
rate at all four points occurred in model 3. In this case, as the 

distribution of properties of materials is in two dimensions, so the 

amount of strain variation in the points on a radius is not the same 

and at each point of the FG rod the value of strain is different from 

the other points. To investigate the displacement of state 3, it is 

important to note that, since the torsion of the wave in the FG rod 
is discussed, then only the displacement in the direction 𝑣 is non-

zero.  

In the following, the displacement charts are drawn in this state 

and separated by the points M, N, P and Q. 
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Figure 20. Distributions of the displacement component 𝑣 In 

terms of time for the points (a)M, (b) N, (c) P and (d)Q for 

four models in state 3 

 

In this case, the maximum displacement is observed at two 

points M and P. Also, according to Fig. 20, it is clear that in all 

four points, the displacement rate is approximately equal in two 
models, 2 and 3, and two models 1 and 4, respectively. The other 

point is that in intervals the same time, the displacement rate in 

models 1 and 4 is smaller than 2 and 3. 

6. Boundary condition effects 

In a new mode and considering the two-dimensional 

functionally graded rod, a new boundary condition is considered 

as a clamped, and stress, strain, and displacement diagrams for the 

four hypothesized points (M, N, P, Q) are plotted and analyzed. 

All details of the FG rod except boundary conditions are 
considered like state 3. 

In Fig. 21 and in M and Q points, the most variation in stress is 

related to model 2. At the point N, the maximum stress has 
occurred in model 4. Also, at point P, the highest stress is for model 

1. By comparing the four points in this case, it is determined that 

the highest stress level occurred at the point P and in the model 1. 

Also, due to the fact that the points P and Q are considered at the 

end of the FG rod, the stress wave has reached these points with a 

little delay. Comparing the four models for these two points, it is 
evident that in models 2 and 3, the wave has reached these points 

sooner. 

In this case, the boundary condition is considered as a clamped 

and the strain-time charts are plotted for 4 points. According to the 

Fig. 22, it is clear that, in the points M and N, the highest strain 

rate is related to model 2. It is noteworthy that while the model 3 
at the beginning of the rod (points M and N) has the lowest strain 

rate, but it has the maximum value of strain at the end of the rod 

(points P and Q). 
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(d) 

Figure 21. Distributions of the shear stress component
z  in terms of 

time for the points (a) M, (b) N, (c) P and (d)Q for four models in mode 

clamped boundary condition 

 

 

Fig. 23 is related to displacement-time charts for the points 

M, N, P and Q. with respect to this figure, it can be seen that 

the smallest initial peak in the M, N, and Q points is related to 

model 2. At the point P, the smallest initial peak can be seen in 

model 1. Also, given that the points P and Q, are at the end of 
the FG rod, So the displacement of these two points began with 

a slight delay. During this period, the greatest amount of 

displacement belongs to the point M and the least amount of 

displacement belongs to the point of Q. 
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(d) 

Figure 22.  Distributions of the shear strain component
z  in terms of 

time for the points (a)M, (b) N, (c) P and (d)Q for four models in mode 

clamped boundary condition 
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Figure 23. Distributions of the displacement component v  in terms of 

time for the points (a)M, (b) N, (c) P and (d)Q for four models in mode 

clamped boundary condition 

7. Cutoff frequency 

To investigate the cutoff frequency in wave propagation, firstly, 

the ratio of stress in rode to the internal stress are calculated that is 

called gain. The amount of gain is showed in Fig. 24 for first state 
of isotropic rod. 

 
Figure 24. The gain of stress 

 

By using of discrete Fourier transform in MATLAB, the 

frequency response of the above chart is calculated. Also, to 
compare the amount of frequencies with -3db that is the criterion 

of cutoff frequency, the vertical axis is converted to db. This chart 

is showed in Fig 25. 

 

 

 
Figure 25. Frequency response of the stress wave 

propagation 
 

As shown in this fig, the main lower cutoff frequency happens 

in 500 KHz and main upper cutoff frequency happens in 3241 

KHz. Another cutoff frequency is occurred in 10875 and 18785 

KHz. 

For different states that mentioned later for material distribution 

in 1D and 2D, the cutoff frequency is calculated that the results are 

showed in Table 9. 
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Table 9. cut off frequency 

FGM distribution 
Lower cutoff 

frequency (KHz) 

Higher cutoff 

frequency (KHz) 

1D 

Specimen1 n=1 478 3500 

Specimen1 n=0.1 491 3980 

Specimen1 n=10 430 3290 

Specimen2 n=1 449 4002 

Specimen2 n=0.1 509 4190 

Specimen2 n=10 512 3220 

2D 

Model 1  388 4220 

Model 2  441 4800 

Model 3  509 6930 

Model 4  498 3180 

 

The results show that the lower cutoff frequency changes are neglectable but upper cutoff frequency directly depended to material 

properties. The compression of this results with mechanical properties of material, it can be understanding that density is more effective 

than other properties such as elastic module and Poisson ratio in cutoff frequency. With increasing density, the higher cutoff frequency is 

reduced and vice versa. Maybe it can be explained by inertia effects. 

8. Conclusion 

In this research, the propagation of torsional wave in the rod 

made of FGM materials has been investigated. The wave is 
considered to be a pulse, and it is applied to the desired rod within 

40 microseconds. The method used to solve the torsional wave 

equations in this study is the finite difference method. The FGM 

materials used in this study are two types of ceramics and two 

types of metal. In the numerical result chapter of this study, 

torsional wave equations for an isotropic rod were initially solved 
and validated. Then, the equations are solved in three different 

states for the FG rod and discussed on the related charts. In a state 

with a one-dimensional distribution of properties, the equations for 

three different volume fractions are solved. In the state with the 

distribution of two-dimensional distribution of properties, four 

different models were made and the torsional equations for all the 
models were solved. 
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