Size-dependent thermoelastic analysis of rotating nanodisks of variable thickness

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, University of Guilan, Rasht, Iran

2 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Iran

Abstract

This paper contains a strain gradient theory to capture size effects in rotating nanodisks of variable thickness under thermal and mechanical loading. Material properties of nanodisks have been taken homogeneous material. The strain gradient theory and the Hamilton’s principle are employed to derive the governing equations. Due to complexity of the governing differential equation and boundary conditions, numerical schemes are used to solve the problem. In the following, some numerical results are presented to show the influence of size effect on stress analysis of rotating nanodisks. Results show that the stresses of rotating nanodisks is strongly sensitive to the length scale material parameters.

Keywords

[1]           M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[2]           K. Q. d. Costa, V. Dmitriev, Comparative analysis of circular and triangular gold nanodisks for field enhancement applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 2, pp. 123-130, 2010.
[3]           E. D. Williams, Nanoscale structures: Lability, length scales, and fluctuations, MRS bulletin, Vol. 29, No. 09, pp. 621-629, 2004.
[4]           M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mechanics of Advanced Materials and Structures, Vol. 26, No. 17, pp. 1469-1481, 2019.
[5]           M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[6]           E. Zarezadeh, V. Hosseini, A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, Mechanics Based Design of Structures and Machines, pp. 1-16, 2019.
[7]           A. Soleimani, K. Dastani, A. Hadi, M. H. Naei, Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory, Steel and Composite Structures, Vol. 30, No. 6, pp. 517-534, 2019.
[8]           A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
[9]           M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, Structural Engineering and Mechanics, Vol. 67, No. 4, pp. 417-425, 2018.
[10]         A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.
[11]         M. Hosseini, A. Hadi, A. Malekshahi, M. Shishesaz, A review of size-dependent elasticity for nanostructures, Journal of Computational Applied Mechanics, Vol. 49, No. 1, pp. 197-211, 2018.
[12]         A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018.
[13]         M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017.
[14]         M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, International Journal of Applied Mechanics, Vol. 9, No. 06, pp. 1750087, 2017.
[15]         M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, The European Physical Journal Plus, Vol. 132, No. 9, pp. 393, 2017.
[16]         M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.
[17]         M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
[18]         M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016/08/01/, 2016.
[19]         M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016/09/01/, 2016.
[20]         M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[21]         M. Shishesaz, M. Hosseini, Mechanical behavior of functionally graded nano-cylinders under radial pressure based on strain gradient theory, Journal of Mechanics, Vol. 35, No. 4, pp. 441-454, 2019.
[22]         R. Noroozi, A. Barati, A. Kazemi, S. Norouzi, A. Hadi, Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity.
[23]         M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bi-Directional FGM Timoshenko Nano-Beam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation, Vol. 0, No. ja, pp. null.
[24]         M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bi-Directional FGM Timoshenko Nano-Beam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation, International Journal of Applied Mechanics, 2020.
[25]         A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020.
[26]         A. M. Abazari, S. M. Safavi, G. Rezazadeh, L. G. Villanueva, Size Effects on Mechanical Properties of Micro/Nano Structures, arXiv preprint arXiv:1508.01322, 2015.
[27]         A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
[28]         A. C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972.
[29]         A. C. Eringen, 2002, Nonlocal continuum field theories, Springer Science & Business Media,
[30]         A. C. Eringen, Theory of micromorphic materials with memory, International Journal of Engineering Science, Vol. 10, No. 7, pp. 623-641, 1972.
[31]         A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[32]         D. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003.
[33]         R. A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 385-414, 1962.
[34]         R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 415-448, 1962.
[35]         M. Najafzadeh, M. M. Adeli, E. Zarezadeh, A. Hadi, Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-15, 2020.
[36]         R. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, Vol. 4, No. 1, pp. 109-124, 1968.
[37]         M. R. Ghazavi, H. Molki, A. Ali beigloo, Nonlinear vibration and stability analysis of the curved microtube conveying fluid as a model of the micro coriolis flowmeters based on strain gradient theory, Applied Mathematical Modelling.
[38]         L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, Vol. 97, pp. 84-94, 12//, 2015.
[39]         L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, Vol. 102, pp. 77-92, 5//, 2016.
[40]         L. Li, Y. Hu, X. Li, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, Vol. 115–116, pp. 135-144, 9//, 2016.
[41]         O. Rahmani, S. A. H. Hosseini, I. Ghoytasi, H. Golmohammadi, Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties, Applied Physics A, Vol. 123, No. 1, pp. 4, 2016.
[42]         A. Li, S. Zhou, L. Qi, Size-dependent electromechanical coupling behaviors of circular micro-plate due to flexoelectricity, Applied Physics A, Vol. 122, No. 10, pp. 918, 2016.
[43]         F. Ebrahimi, M. R. Barati, Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects, Applied Physics A, Vol. 123, No. 1, pp. 5, 2016//, 2016.
[44]         F. Ebrahimi, M. R. Barati, Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory, Applied Physics A, Vol. 122, No. 9, pp. 843, 2016.
[45]         Y. Zheng, T. Chen, C. Chen, A size-dependent model to study nonlinear static behavior of piezoelectric cantilever microbeams with damage, Microsystem Technologies, pp. 1-8, 2017//, 2017.
[46]         F. Tavakolian, A. Farrokhabadi, Size-dependent dynamic instability of double-clamped nanobeams under dispersion forces in the presence of thermal stress effects, Microsystem Technologies, pp. 1-15, 2017//, 2017.
[47]         K. Raahemifar, Size-dependent asymmetric buckling of initially curved shallow nano-beam using strain gradient elasticity, Microsystem Technologies, pp. 1-12, 2017//, 2017.
[48]         M. Soltanpour, M. Ghadiri, A. Yazdi, M. Safi, Free transverse vibration analysis of size dependent Timoshenko FG cracked nanobeams resting on elastic medium, Microsystem Technologies, pp. 1-18, 2016//, 2016.
[49]         M. H. Ghayesh, H. Farokhi, A. Gholipour, S. Hussain, Complex motion characteristics of three-layered Timoshenko microarches, Microsystem Technologies, pp. 1-14, 2016//, 2016.
[50]         A. Soleimani, M. H. Naei, M. M. Mashhadi, Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications, Microsystem Technologies, pp. 1-13, 2016//, 2016.
[51]         M. H. Ghayesh, H. Farokhi, S. Hussain, A. Gholipour, M. Arjomandi, A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium, Microsystem Technologies, pp. 1-19, 2016//, 2016.
[52]         M. E. Golmakani, H. Vahabi, Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions, Microsystem Technologies, pp. 1-16, 2016//, 2016.
[53]         J. S. Peng, L. Yang, J. Yang, Size effect on the dynamic analysis of electrostatically actuated micro-actuators, Microsystem Technologies, pp. 1-8, 2015//, 2015.
[54]         R. Ansari, M. Faraji Oskouie, H. Rouhi, Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory, Nonlinear Dynamics, Vol. 87, No. 1, pp. 695-711, 2017//, 2017.
[55]         R. Gholami, R. Ansari, A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates, Nonlinear Dynamics, Vol. 84, No. 4, pp. 2403-2422, 2016.
[56]         V. Mohammadi, R. Ansari, M. Faghih Shojaei, R. Gholami, S. Sahmani, Size-dependent dynamic pull-in instability of hydrostatically and electrostatically actuated circular microplates, Nonlinear Dynamics, Vol. 73, No. 3, pp. 1515-1526, 2013//, 2013.
[57]         S. Ramezani, Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory, Nonlinear Dynamics, Vol. 73, No. 3, pp. 1399-1421, 2013//, 2013.
[58]         R. Ansari, H. Ramezannezhad, R. Gholami, Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment, Nonlinear Dynamics, Vol. 67, No. 3, pp. 2241-2254, 2012//, 2012.
[59]         S. Zaitsev, O. Shtempluck, E. Buks, O. Gottlieb, Nonlinear damping in a micromechanical oscillator, Nonlinear Dynamics, Vol. 67, No. 1, pp. 859-883, 2012//, 2012.
[60]         H. Sumali, M. I. Younis, E. M. Abdel-Rahman, Special issue on micro- and nano-electromechanical systems, Nonlinear Dynamics, Vol. 54, No. 1, pp. 1-2, 2008//, 2008.
[61]         Y. Wang, F.-M. Li, Y.-Z. Wang, Nonlocal effect on the nonlinear dynamic characteristics of buckled parametric double-layered nanoplates, Nonlinear Dynamics, Vol. 85, No. 3, pp. 1719-1733, 2016//, 2016.
[62]         K. Kiani, Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles, Nonlinear Dynamics, Vol. 76, No. 4, pp. 1885-1903, 2014.
[63]         H. Mohammadi, M. Mahzoon, M. Mohammadi, M. Mohammadi, Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation, Nonlinear Dynamics, Vol. 76, No. 4, pp. 2005-2016, 2014.
[64]         Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650054, 2016.
[65]         M. Shishesaz, A. Zakipour, A. Jafarzadeh, Magneto-Elastic Analysis of an Annular FGM Plate Based on Classical Plate Theory Using GDQ Method, Latin American Journal of Solids and Structures, Vol. 13, No. 14, pp. 2736-2762, 2016.
[66]         M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018.
[67]         M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014/12/01/, 2014.
[68]         M. Bayat, M. Saleem, B. Sahari, A. M. S. Hamouda, E. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, International Journal of Pressure Vessels and Piping, Vol. 86, No. 6, pp. 357-372, 2009.
[69]         L. Chen, H. Chu, Hybrid laplace transform/finite element method for transient thermoelastic problem of composite hollow cylinder, Computers & Structures, Vol. 36, No. 5, pp. 853-860, 1990.
[70]         P. Chen, Symmetric thermoelastic stress in cylinders by the lanczos-chebyshev method, Nuclear Engineering and Design, Vol. 55, No. 1, pp. 123-129, 1979.
[71]         C. Jiunn-Ming, C. Cha'o-Kuang, C. Ming, Thermoelastic transient response of an infinitely long annular cylinder composed of three different materials, Computers & structures, Vol. 45, No. 2, pp. 229-236, 1992.
[72]         Y. Yu-Ching, C. Cha'o-Kuang, Thermoelastic transient response of an infinitely long annular cylinder composed of two different materials, International journal of engineering science, Vol. 24, No. 4, pp. 569-581, 1986.
[73]         H. Shodja, F. Ahmadpoor, A. Tehranchi, Calculation of the additional constants for fcc materials in second strain gradient elasticity: behavior of a nano-size Bernoulli-Euler beam with surface effects, Journal of Applied Mechanics, Vol. 79, No. 2, pp. 021008, 2012.
[74]         MatWeb, Accessed; http://www.matweb.com.
 
Volume 51, Issue 2
December 2020
Pages 340-360
  • Receive Date: 22 January 2020
  • Revise Date: 10 February 2020
  • Accept Date: 01 March 2020