[1] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[2] K. Q. d. Costa, V. Dmitriev, Comparative analysis of circular and triangular gold nanodisks for field enhancement applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 2, pp. 123-130, 2010.
[3] E. D. Williams, Nanoscale structures: Lability, length scales, and fluctuations, MRS bulletin, Vol. 29, No. 09, pp. 621-629, 2004.
[4] M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mechanics of Advanced Materials and Structures, Vol. 26, No. 17, pp. 1469-1481, 2019.
[5] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[6] E. Zarezadeh, V. Hosseini, A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, Mechanics Based Design of Structures and Machines, pp. 1-16, 2019.
[7] A. Soleimani, K. Dastani, A. Hadi, M. H. Naei, Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory, Steel and Composite Structures, Vol. 30, No. 6, pp. 517-534, 2019.
[8] A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
[9] M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, Structural Engineering and Mechanics, Vol. 67, No. 4, pp. 417-425, 2018.
[10] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.
[11] M. Hosseini, A. Hadi, A. Malekshahi, M. Shishesaz, A review of size-dependent elasticity for nanostructures, Journal of Computational Applied Mechanics, Vol. 49, No. 1, pp. 197-211, 2018.
[12] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018.
[13] M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017.
[14] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, International Journal of Applied Mechanics, Vol. 9, No. 06, pp. 1750087, 2017.
[15] M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, The European Physical Journal Plus, Vol. 132, No. 9, pp. 393, 2017.
[16] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.
[17] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
[18] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016/08/01/, 2016.
[19] M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016/09/01/, 2016.
[20] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[21] M. Shishesaz, M. Hosseini, Mechanical behavior of functionally graded nano-cylinders under radial pressure based on strain gradient theory, Journal of Mechanics, Vol. 35, No. 4, pp. 441-454, 2019.
[22] R. Noroozi, A. Barati, A. Kazemi, S. Norouzi, A. Hadi, Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity.
[23] M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bi-Directional FGM Timoshenko Nano-Beam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation, Vol. 0, No. ja, pp. null.
[24] M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bi-Directional FGM Timoshenko Nano-Beam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation, International Journal of Applied Mechanics, 2020.
[25] A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020.
[26] A. M. Abazari, S. M. Safavi, G. Rezazadeh, L. G. Villanueva, Size Effects on Mechanical Properties of Micro/Nano Structures, arXiv preprint arXiv:1508.01322, 2015.
[27] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
[28] A. C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972.
[29] A. C. Eringen, 2002, Nonlocal continuum field theories, Springer Science & Business Media,
[30] A. C. Eringen, Theory of micromorphic materials with memory, International Journal of Engineering Science, Vol. 10, No. 7, pp. 623-641, 1972.
[31] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[32] D. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003.
[33] R. A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 385-414, 1962.
[34] R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 415-448, 1962.
[35] M. Najafzadeh, M. M. Adeli, E. Zarezadeh, A. Hadi, Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-15, 2020.
[36] R. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, Vol. 4, No. 1, pp. 109-124, 1968.
[37] M. R. Ghazavi, H. Molki, A. Ali beigloo, Nonlinear vibration and stability analysis of the curved microtube conveying fluid as a model of the micro coriolis flowmeters based on strain gradient theory, Applied Mathematical Modelling.
[38] L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, Vol. 97, pp. 84-94, 12//, 2015.
[39] L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, Vol. 102, pp. 77-92, 5//, 2016.
[40] L. Li, Y. Hu, X. Li, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, Vol. 115–116, pp. 135-144, 9//, 2016.
[41] O. Rahmani, S. A. H. Hosseini, I. Ghoytasi, H. Golmohammadi, Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties, Applied Physics A, Vol. 123, No. 1, pp. 4, 2016.
[42] A. Li, S. Zhou, L. Qi, Size-dependent electromechanical coupling behaviors of circular micro-plate due to flexoelectricity, Applied Physics A, Vol. 122, No. 10, pp. 918, 2016.
[43] F. Ebrahimi, M. R. Barati, Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects, Applied Physics A, Vol. 123, No. 1, pp. 5, 2016//, 2016.
[44] F. Ebrahimi, M. R. Barati, Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory, Applied Physics A, Vol. 122, No. 9, pp. 843, 2016.
[45] Y. Zheng, T. Chen, C. Chen, A size-dependent model to study nonlinear static behavior of piezoelectric cantilever microbeams with damage, Microsystem Technologies, pp. 1-8, 2017//, 2017.
[46] F. Tavakolian, A. Farrokhabadi, Size-dependent dynamic instability of double-clamped nanobeams under dispersion forces in the presence of thermal stress effects, Microsystem Technologies, pp. 1-15, 2017//, 2017.
[47] K. Raahemifar, Size-dependent asymmetric buckling of initially curved shallow nano-beam using strain gradient elasticity, Microsystem Technologies, pp. 1-12, 2017//, 2017.
[48] M. Soltanpour, M. Ghadiri, A. Yazdi, M. Safi, Free transverse vibration analysis of size dependent Timoshenko FG cracked nanobeams resting on elastic medium, Microsystem Technologies, pp. 1-18, 2016//, 2016.
[49] M. H. Ghayesh, H. Farokhi, A. Gholipour, S. Hussain, Complex motion characteristics of three-layered Timoshenko microarches, Microsystem Technologies, pp. 1-14, 2016//, 2016.
[50] A. Soleimani, M. H. Naei, M. M. Mashhadi, Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications, Microsystem Technologies, pp. 1-13, 2016//, 2016.
[51] M. H. Ghayesh, H. Farokhi, S. Hussain, A. Gholipour, M. Arjomandi, A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium, Microsystem Technologies, pp. 1-19, 2016//, 2016.
[52] M. E. Golmakani, H. Vahabi, Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions, Microsystem Technologies, pp. 1-16, 2016//, 2016.
[53] J. S. Peng, L. Yang, J. Yang, Size effect on the dynamic analysis of electrostatically actuated micro-actuators, Microsystem Technologies, pp. 1-8, 2015//, 2015.
[54] R. Ansari, M. Faraji Oskouie, H. Rouhi, Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory, Nonlinear Dynamics, Vol. 87, No. 1, pp. 695-711, 2017//, 2017.
[55] R. Gholami, R. Ansari, A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates, Nonlinear Dynamics, Vol. 84, No. 4, pp. 2403-2422, 2016.
[56] V. Mohammadi, R. Ansari, M. Faghih Shojaei, R. Gholami, S. Sahmani, Size-dependent dynamic pull-in instability of hydrostatically and electrostatically actuated circular microplates, Nonlinear Dynamics, Vol. 73, No. 3, pp. 1515-1526, 2013//, 2013.
[57] S. Ramezani, Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory, Nonlinear Dynamics, Vol. 73, No. 3, pp. 1399-1421, 2013//, 2013.
[58] R. Ansari, H. Ramezannezhad, R. Gholami, Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment, Nonlinear Dynamics, Vol. 67, No. 3, pp. 2241-2254, 2012//, 2012.
[59] S. Zaitsev, O. Shtempluck, E. Buks, O. Gottlieb, Nonlinear damping in a micromechanical oscillator, Nonlinear Dynamics, Vol. 67, No. 1, pp. 859-883, 2012//, 2012.
[60] H. Sumali, M. I. Younis, E. M. Abdel-Rahman, Special issue on micro- and nano-electromechanical systems, Nonlinear Dynamics, Vol. 54, No. 1, pp. 1-2, 2008//, 2008.
[61] Y. Wang, F.-M. Li, Y.-Z. Wang, Nonlocal effect on the nonlinear dynamic characteristics of buckled parametric double-layered nanoplates, Nonlinear Dynamics, Vol. 85, No. 3, pp. 1719-1733, 2016//, 2016.
[62] K. Kiani, Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles, Nonlinear Dynamics, Vol. 76, No. 4, pp. 1885-1903, 2014.
[63] H. Mohammadi, M. Mahzoon, M. Mohammadi, M. Mohammadi, Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation, Nonlinear Dynamics, Vol. 76, No. 4, pp. 2005-2016, 2014.
[64] Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650054, 2016.
[65] M. Shishesaz, A. Zakipour, A. Jafarzadeh, Magneto-Elastic Analysis of an Annular FGM Plate Based on Classical Plate Theory Using GDQ Method, Latin American Journal of Solids and Structures, Vol. 13, No. 14, pp. 2736-2762, 2016.
[66] M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018.
[67] M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014/12/01/, 2014.
[68] M. Bayat, M. Saleem, B. Sahari, A. M. S. Hamouda, E. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, International Journal of Pressure Vessels and Piping, Vol. 86, No. 6, pp. 357-372, 2009.
[69] L. Chen, H. Chu, Hybrid laplace transform/finite element method for transient thermoelastic problem of composite hollow cylinder, Computers & Structures, Vol. 36, No. 5, pp. 853-860, 1990.
[70] P. Chen, Symmetric thermoelastic stress in cylinders by the lanczos-chebyshev method, Nuclear Engineering and Design, Vol. 55, No. 1, pp. 123-129, 1979.
[71] C. Jiunn-Ming, C. Cha'o-Kuang, C. Ming, Thermoelastic transient response of an infinitely long annular cylinder composed of three different materials, Computers & structures, Vol. 45, No. 2, pp. 229-236, 1992.
[72] Y. Yu-Ching, C. Cha'o-Kuang, Thermoelastic transient response of an infinitely long annular cylinder composed of two different materials, International journal of engineering science, Vol. 24, No. 4, pp. 569-581, 1986.
[73] H. Shodja, F. Ahmadpoor, A. Tehranchi, Calculation of the additional constants for fcc materials in second strain gradient elasticity: behavior of a nano-size Bernoulli-Euler beam with surface effects, Journal of Applied Mechanics, Vol. 79, No. 2, pp. 021008, 2012.