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1. Introduction 

Nanotechnology has a great contribution in the development 
of engineering and medicine fields. One of the most useful 

nanostructures are nanodiscs [1]. Circular nanodisk is a common 
component of nanoelectromechanical systems (NEMS) [2] that 

exposed to mechanical and thermal loading. The classical 
elasticity theory is used for a continuum structures, but in nano-

scale, classical continuum approaches do not adequately address 
the atomistic nature of the nano-size structures [3-25]. 

experimental studies show that size effect is important in nano-
scale [26]. Since the experimental studies of nanostructures are 

difficult, the molecular dynamics (MD) simulations have become 
the eminent tool in order to model and study the nanostructures 

and their mechanical behaviors; but it is computationally 
expensive for structures with a large number of atoms [18-20, 27]. 

In last decades, some non-classical continuum mechanics theories 

are introduced to capture size effect [28-35]. Among the non-
classical continuum mechanics theories, strain gradient theory 

[36] has been widely used to analyze the nanostructures. 
According to this theory, the strain energy of the nanostructure is 

dependent on gradients of strain in addition to strains [37]. 
In recent years, much research has been done in the field of 
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nanotechnology [38-40]. Rahimi et al. [41] studied thermo-

mechanical free vibration and buckling of a curved functionally 
graded microbeam in the framework of strain gradient theory. The 

Timoshenko beam model was used to examine the behavior of 
microstructures. The material properties of microbeam vary 

according to power-law exponent in the thickness direction. Also, 
Hamilton’s principle was used in order to obtain the equilibrium 

equation and boundary conditions. In their study the effects of 
some parameters such as length scale parameter, variation of 

material properties and temperature were investigated. Results 
indicate that natural frequency of functionally graded microbeams 

under thermo-mechanical loading are more sensitive to 
geometrical, physical and mechanical properties. A flexoelectric 

theory was offered by Li et al. [42] in order to study the size 
dependent electromechanical coupling behaviors of circular 

micro-plate. In this research, static bending and free vibration 

behaviors of simply supported circular microplate were studied. 
Findings indicate that bending behaviors and natural frequency of 

this microplate are dependent on the size effects. Free vibration of 
through the thickness functionally graded nanobeams on the 

viscoelastic foundation was investigated by Ebrahimi and Barati 
[43]. Surface stress effects were considered for viscoelastic 
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foundation and material properties vary according to power-law 

model. Also, Euler-Bernoulli beam model was utilized in order to 
analyze the behavior of nanobeams. Results of this study 

demonstrate that the frequency of a functionally graded nanobeam 
decreases when the nonlocal parameters were taken into account. 

Considering the length scale parameters increase the frequency 
and stiffness of FG nanobeam. Moreover, damping coefficient will 

reduce the vibration frequency. In another study, Ebrahimi and 
Barati [44] investigated the wave propagation of size-dependent 

functionally graded nanobeams. They analyze this problem by 
using of nonlocal strain gradient theory and consider the thermal 

effects. Governing equations were derived by using of Hamilton’s 
principle. Results show that phase velocity and wave frequency 

have reverse proportion to temperature rise. Zhang et al. [45] 
suggested a size-dependent model for the nonlinear static behavior 

of damaged piezoelectric cantilever microbeams in the framework 
of modified couple stress theory. They use Hamilton’s principle in 

order to formulate the problem. Their study illustrates that the size 
effect has a significant influence on the nonlinear static behavior 

of these microstructures. Tavakolian and Farrokhabadi [46] 
developed a novel model for the dynamic instability of Euler-

Bernoulli nanobeams in the thermal environment by using of 
nonlocal elasticity theory. Nonlinear dynamic governing equation 

was solved numerically. The effects of some parameters such as 
nonlocal parameter and temperature on the dynamic pull-in 

instability of double clamped nanobeams were studied. 
Raahemifar [47] investigated symmetric and asymmetric size-

dependent buckling of initially curved shallow Euler-Bernoulli 
nanobeams based on the strain gradient theory. Results indicate 

that the size effects play an important role in the buckling and pull-

in instability of a nanobeam. Size-dependent free transverse 
vibration of through-thickness functionally graded Timoshenko 

cracked nanobeams was studied by Soltanpour et al. [48] by using 
of nonlocal elasticity theory. It was assumed that the nanobeam 

was resting on the Winkler elastic foundation and material 
properties vary according to power-law distribution. Hamilton’s 

principle was employed in order to derive the equation of motion 
and associated boundary condition of FG nanobeams. Findings 

indicate that nonlocal parameters, mode number and crack 
position have significant effects on the free vibration behavior of 

FG cracked nanobeams. Ghayesh et al. [49] developed a numerical 

method in order to simulate the complex motion of three-layered 

Timoshenko microarches. Modified couple stress theory was used 
to consider the size effects. Soleimani et al. [50] offered an 

isogeometric finite element method for buckling behavior of 
graphene sheets based on the nonlocal elasticity and first-order 

shear deformation plate theories. Results show that buckling loads 
are affected by size effects. Based on the modified couple stress 

theory, a nonlinear third-order shear-deformable model for 
dynamic analysis of microplates which resting on the elastic 

foundation was presented by Ghayesh et al. [51]. It is observed 
that the natural frequency is directly proportional to linear stiffness 

coefficient of elastic foundation and has a reverse proportion to 
the thickness ratio. Golmakani and Vahabi [52] examined 

axisymmetric buckling behaviors of functionally graded annular 
nanoplates which embedded in a Pasternak elastic foundation on 

the basis of nonlocal elasticity and first order shear deformation 

theories. Variation of material properties were according to the 
power-law distribution. This study indicates that buckling loads 

are independent of boundary conditions. Moreover, buckling loads 
have a positive relation to thickness-to-radius ratio. Peng et al. 

[53] offered a new analytical model for the nonlinear behavior of 
electrostatically actuated micro-actuators based on the symmetric 

stress gradient elasticity theory. It was observed that symmetric 
stress gradient elasticity theory predict stiffer micro-beam 

compared with classical elasticity theory. Size effect have a 
significant effect on the nonlinear dynamic behavior of micro-

actuators for smaller values of initial gap, length and height of 
beam along with higher values of voltage. Ansari et al. [54] 

investigated the linear and nonlinear vibration behavior of 
viscoelastic micro/nano-beams in the framework of modified 

strain gradient theory. Timoshenko beam model was considered. 
Findings show that fractional order and thickness-to-length scale 

parameter have revers effects on the frequency of size-dependent 
viscoelastic beams. Gholami and Ansari [55] studied free 

vibration behavior of functionally graded rectangular microplates 
on the basis of strain gradient theory. Based on the strain gradient 

elasticity and Kirchhoff plate theories, free vibration and pull-in 
instability of circular microplates were investigated by 

Mohammadi et al. [56].  They were considered hydrostatic and 
electrostatic forces simultaneously. Hosseini et al. [17] analyzed 

mechanical behaviors of functionally graded rotating nanodisks of 
nonlinear variable thickness. Their research indicate that 

equilibrium equation and boundary conditions of nanodisk are 
different from those of macro-scale disk. Ramezani [57] suggested 

a model in the framework of first-strain gradient elasticity theory 

in order to investigate nonlinear free vibration behavior of 
Kirchhoff microplate. Ansari et al. [58] studied the nonlinear 

vibration behavior of multiwalled carbon nanotubes subjected to 
temperature effect based on the nonlocal elasticity theory. Also, 

many other researches have done in the field of non-classical 
elasticity theory [59-63].  

Previous literature review shows that little attention has been 
to the mechanical and thermal behaviors of rotating nanodisks of 

variable thickness. Therefore, in this paper, fundamental equations 
of nanodisks are presented based on the non-classical continuum 

mechanics. The equilibrium equation and boundary conditions of 
nanodisks are obtained in the sec. 2. Then, numerical results and 

diagrams have been provided in the sec. 3. Finally, the results are 
summarized in sec. 4. 

 

2. Theory and formulation 

Fig. 1 shows the geometry of a nanodisk. The thickness of 
nanodisk is a function of radius (r). Temperature at inner radius, 

temperature at outer radius, internal and external pressure 

(pressure at inner and outer radii) are Ti, To, 𝜎̂𝑖  and 𝜎̂𝑜 , 

respectively. The nanodisk rotates with constant angular velocity, 
ω. It is assumed that the disk thickness is too small compared to 

its radii. Furthermore, assuming plane stress condition, the radial 
loads are allowed to vary along the disk radius while the tangential 

components of the load are taken to be zero. 
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Fig. 1. A rotating nanodisk of variable thickness

In order to derive the governing equations, strain gradient theory 
is applied. It is assumed that rotating nanodisk of variable thickness 

is subjected to a radial varying temperature field. In classical 
elasticity theory, strain energy density function is dependent on the 

infinitesimal strain tensor (which is the symmetric portion of the 
gradient of radial displacement field u). One can point out that the 

strain tensor ε and gradient of strain tensor ξ can be written as: 
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The components of the strain tensor with thermal strains may be 

written as [64];  
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In Eq. (3), α and T are the coefficient of thermal expansion 
coefficient and temperature at any radius, respectively. One can 

show that the components of gradient of strains, in presence of a 
temperature field are: 
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For plane stress conditions, the relationship between stresses and 

strains is determined using Hooke's Law [65-67];  

(5) 
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where E and υ are the modulus of elasticity and Poisson's ratio, 

respectively.  
High-order stress tensor τijk is defined as follows: 
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where ai’s and δij are the length scale material parameters and 

Kronecker’s delta, respectively. Consequently, expanding Eq. (7) 
and using Eq. (4) we have: 
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Now, Hamilton's principle, as given in Eq. (10), is used to derive 
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the governing differential equation and its associated boundary 

conditions. 

(10)  
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In this equation, W, K and U are the work done by the external 

loads, kinetic energy and total strain energy, respectively. The 
variation in total strain energy may be written as;  
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 where h and V are the thickness and volume of the nano-disk, 
respectively. Note that the temperature distribution is assumed to be 

only a function of r, and hence, along with other assumptions, 
axisymmetric loading is imposed on the model. Additionally, the 

expression for variation in work done by external loads is: 
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In Eq. (12), the symbols with a hat (^) correspond to the components 

associated with the external load. Due to axisymmetric loading, the 
tangential component of the displacement, namely v, is zero. 

Consequently, since additional εrθ and εθr will be zero, then, Eq. (12) 
may be simplified as: 
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Kinetic energy of the rotating nano-disks can be written as [17]; 
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where ρ, ω and h are the density, angular velocity and nanodisk 

thickness, respectively. Substituting Eqs.(11), (13) and (14) in Eq. 
(10), one may conclude that; 
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Using integration by parts along with variational principle, Eq. (15) may be simplified as;   
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One may use Eq. (16) to deduce the equilibrium equation and its associated boundary conditions in terms of Eq. (17).  
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Substituting Eqs. (5), (6) and (8) in Eqs. (17), one may write the differential equilibrium equation.  
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Similarly, for the boundary conditions we have; 
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and (B. C.  2) 

(20) 
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Finally, the total stresses are calculated as follows. 

 
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 (21) 

Now, for simplicity and an easier solution, these equations are non-dimensionalized. For this purpose, the following 

non-dimensional parameters are defined.   

(22) 
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Therefore, Eqs. (18)–(20) can be written in a non-dimensional form as;  



Barati et al. 

345 

 
 

 

 

 

4 3

1 1 1 2 3 5 74 3

2

1 1 2 3 5 7 22

2

2 3 4 5 6 7 8

2

2 2 4 6 82

22

2 2

2 2

1

1
2

1
2

d u r dh d u
rhk r k h k k k k k

dr dr dr

d h dh
Ahr r k k k k k k

d udr dr

dr
h k k k k k k k

r

dh d h dh
Ar Ah k k k k k

dr dr r dr

h k
r

  
        

  

  
        

  
 
       
 

   
         
   

  

   

 
 

 

4 6 8

2

22

2 4 6 8 2 4 6 82 3

2

1 1 2 3 42

2 3 4

1 1

1 1
2 2

2

+
1

o o
o o

o o

du

dr
k k k

dh d h
B Ah k

dr r r dr
u

dh
k k k k h k k k k

r dr r

d h dh
r D D D D D dr dh r dr drT r C T T

u dr u
hCr h D D D

r

  

 
 
 
 
   
 

    
      
    

 
         
 

 
     

     
       
 

 

 
   2 3

2

1 1 2 3 4 12 3
2 2o o o

o o

o o o

T

dr

d T d Tr dh r r
T r D h D D D D T rhD r h

u dr dr u dr u



 
  



  
         

 

 

B. C. 1; 

(23)
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and B. C. 2; 

(25) 
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If the size effect coefficients are taken to zero (a1=a2=a3=a4=a5=0), then the above equations reduce to those of classic 

solution. In this case, Eq. (24) is vanished and the equilibrium Eq. (23) and boundary condition (25) reduce into; 

(26) 
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and  
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(27)    ˆ          @ ,1o o
o r i
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du u r r
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dr r u u
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According to Ref. [68], the temperature distribution in a disk with variable thickness may be obtained by solving the 

following differential equation; 

(28) 
2

2
0

d T dh d T
rhk hk rk

dr dr dr

  
   
 

  

where 𝑘̅  is the non-dimensional thermal conductivity coefficient. 
Many authors have used Eq. (28) to represent the heat distribution 

in cylindrical coordinate [69-72]. Due to complexity of the 
governing differential equations and boundary conditions, they are 

solved using numerical schemes. 
 

3. Results and discussion 
Thermoelastic analysis of a nanodisk of variable thickness is 

performed based on strain gradient theory, in this section. The 
influences of various parameters such as thickness profile and 

temperature on the radial displacement and stresses are studied. 

In this paper, mechanical properties of nanodisk are constant; 

(29)   =Constantop r p  

where po is the material property at each radius. Nickel is considered 
for the material properties. Also, the nanodisk has variable 

thickness. 

(30)   o

m

h
h r

r
  

 
In order to find the influence of temperature and angular velocity 

on radial displacements, radial and circumferential stresses, the 
following values given in Table 1 and 2 were assigned for the length 

scale material parameters [73] and mechanical properties [74] of the 
nanodisk, respectively. To deduce the results, it was assumed that 

the temperatures at the inner and outer radii are 25 oC and 100 oC, 
while the nanodisk angular velocity is 100 Rad/s. 

 

 

Table 1. The length scale material parameters 𝑎𝑖 [73] 

 material a1 a2 a3 a4 a5 

1 Ni 0.2386 0.0134 0.0013 0.0934 0.2462 

2 Cu 0.1833 0.0103 0.0010 0.0717 0.1891 

3 Ag 0.1766 0.0269 0.0121 0.0376 0.0976 

4 Au 0.2994 0.0944 0.0458 0.0312 0.1046 

5 Al 0.1407 0.0027 
-

0.0083 
0.0966 0.2584 

 

 
Table 2. Mechanical property of materials [74] 

 
material 

E 

(GPa)  
      -m m C    3 /Kg m  W m K  

1 Ni 207 0.31 13.1 8880 60.7 

2 Cu 110 0.343 20.2 7764 483 

3 Ag 76 0.37 19.9 10491 419 

4 Au 77.2 0.42 14.6 19320 301 

5 Al 68 0.36 25.5 2698.9 210 
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(a) Radial stress component. (b) Tangential stress component. 

  
(a) Distribution of 𝜎𝑟 based on FE model (b) Distribution of 𝜎𝜃 base on FE model 

  

(c) Distribution of 𝜎𝑟 based on strain gradient theory 
(d) Distribution of 𝜎𝜃 based on strain gradient 

theory 

  
Fig. 2. Comparison between classical and strain gradient theory for a disk with thermal effect, (a) radial stresses (b) 

tangential stresses, (c) 3-D distribution of radial stresses obtained from FE results, (d) 3-D distribution of radial stresses 
obtained from FE results, (e) 3-D distribution of radial stresses using strain gradient theory, (f) 3-D distribution of 

tangential stresses using strain gradient theory. 

Additionally, Fig. 2 illustrates radial and tangential stress 

components developed in a rotating disk based on current solution 
and those of finite element model. The finite element results are 

based on classical solution. Here, there is a variation in temperature 
which occurs along the macro-disk radius. As observed, the results 

based on the strain gradient theory match those of finite element 

solution at all points along the disk radius.  

3.1. The effect of temperature 

Fig. 3-7 present the effects of temperature on radial 

displacement and the induced stress components. It is noticed that 
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angular velocity of the nanodisk was equal to 100 𝑅𝑎𝑑/𝑠 and the 
external pressures were assumed to be zero at the inner and outer 

radii, in this section. 
Fig. 3 displays the effect of temperature rise at the outer radius 

on the induced radial stress, based on strain gradient theory. This 

results show that the location of zero induced radial stress 𝜎̅𝑟 

remains intact at 𝑟̅ =0.91. Maximum values of radial stresses 
occurred at inner radius for all values of temperature. 

Depicted in Fig. 4 is the influence of temperature variation on 

non-dimensional circumferential stress 𝜎𝜃. This figure shows that 

zero circumferential stress occurs at 𝑟̅=0.5 for all values of To. 
Also, the outer radius is more affected by the induced temperature 
profile. 

The effect of temperature rising at outer radius on the high-
order stresses plotted in Fig. 5-7. As it is seen, non-dimensional 

high-order stresses, 𝜏̅𝑟𝑟𝑟 , 𝜏̅𝜃𝜃𝑟  and 𝜏̅𝑟𝜃𝜃  have positive relation to 
temperature. Also, these figures show that the location of 

maximum values (maximum values location) of 𝜏̅𝑟𝑟𝑟 , 𝜏̅𝜃𝜃𝑟  and 

𝜏̅𝑟𝜃𝜃  occurred at fixed points. So, it can conclude that the location 

of maximum values (maximum values location) of high-order 

stresses are not dependent on temperature rising. Reminder 

that 𝜏̅𝑟𝑟𝑟 is one of the boundary conditions. Fig. 5 demonstrates that 
due to zero boundary condition (applied mechanical boundary 

condition in this section), the values of 𝜏̅𝑟𝑟𝑟  are zero at boundaries 
and the boundary conditions are satisfied. 

To show the effect of temperature rising, variation of total 
stresses versus the non-dimensional radius are plotted in Fig. 8 and 

9. Total non-dimensional stresses have positive relation to 
temperature. Location of maximum values (maximum values 

location) of total stresses are independent of temperature. Note that 

unlike classical elasticity theory,  𝜎̅𝑟  or 𝜎𝑟
𝑡  isn’t a boundary 

condition. Therefore, as shown in Fig. 8, 𝜎𝑟
𝑡  isn’t equal to zero, 

while applied external load are equal to zero at boundaries. Total 

tangential stresses are equal to zero at 𝑟̅ ≈0.47 for all temperatures 
at outer radii. Note that the total radial and tangential stresses 

increasing as To increasing. 
 

 
 

 
Fig. 3. The effect of temperature profile on dimensionless radial stress. 
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Fig. 4. The effect of temperature profiles on dimensionless circumferential stress. 

 
Fig. 5. The effect of temperature profiles on 𝜏̅𝑟𝑟𝑟 . 
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Fig. 6. The effect of temperature profiles on 𝜏̅𝜃𝜃𝑟.  

 
Fig. 7. The effect of temperature profiles on 𝜏̅𝑟𝜃𝜃. 
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Fig. 8. The effect of temperature profile on the 𝜎𝑟

𝑡 . 

 

 
Fig. 9. The effect of temperature profile on the 𝜎𝜃

𝑡 .
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3.2. The effect of thickness profile 

The thickness profiles for different values of m are plotted in 
Fig. 10. The thickness at inner radius increases as m increases, 

while the thickness of nanodisk at outer radius is constant. Fig. 11 

explain the distribution of Δ𝑇̅  along the radius of nanodisk for 
different thicknesses and temperature variation decreases with 

increasing m. So, it is predicted that we can obtained better stress 
distribution along radius of nanodisk for larger amounts of m. 

Plotted in Fig. 12 is the influence of thickness profile on the 
radial displacement. It is clearly seen from this figure that the radial 

displacements decreasing as m increasing. Therefore, it is 
concluded that the variable thickness is better than constant 

thickness for nanodisk under thermal and mechanical loads. Due to 
angular velocity and greater temperature at outer radius, radial 

displacements at outer radiuses are greater than radial 

displacements at inner radiuses (radial displacement curve are 
ascending).  

Fig. 13 and 14 depict the effects of thickness profile on the non-
dimensional radial and tangential stresses. As m increases, stresses 

decrease and increase at inner and outer radii, respectively. Radial 

stresses have same value at 𝑟̅=0.9 for all values of m. 
Fig. 15-17 show the non-dimensional high-order stresses for 

different thickness profiles. It is clearly observed from these 

figures that the location of maximum of high-order stresses and the 
maximum values of high-order stresses are depend on m, in this 

case. The use of variable thickness decreases the maximum values 

of high-order stress 𝜏̅𝑟𝑟𝑟. 
Fig. 18 and 19 present the distribution of total radial and 

tangential stresses along radius of nanodisk for different thickness 

profiles. Again it is seen that total radial stresses are nonzero at 
inner and outer radius, while the external loads at boundaries are 

zero. The use of variable thickness can be reduced total radial 
stress, and maximum total radial stress location depend on 

thickness profile. But it should be noted that the use of variable 

thickness increased circumferential stress at outer radii of 
nanodisk.

 
 

 

 
Fig. 10. Thickness profile for different values of m. 
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Fig. 11. The effect of thickness profiles on the temperature distribution. 

 
Fig. 12. The effect of thickness profile on dimensionless radial displacement. 
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Fig. 13. The effect of thickness profile on dimensionless radial stress. 

 
Fig. 14. The effect of thickness profile on dimensionless circumferential stress. 
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Fig. 15. The effect of thickness profile on 𝜏̅𝑟𝑟𝑟 . 

 

 
Fig. 16. The effect of thickness profile on 𝜏̅𝜃𝜃𝑟.. 
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Fig. 17. The effect of thickness profile on 𝜏̅𝑟𝜃𝜃. 

 
Fig. 18. The effect of thickness profile on 𝜎̅𝑟

𝑡 . 
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Fig. 19. The effect of thickness profile on 𝜎̅𝜃

𝑡 .

3.3. The effect of angular velocity 

Finally, Table 3 is presented to compare total radial stress, 𝜎𝑟
𝑡 , 

for different angular velocities, ω. The results show that for 
moderate values of angular velocity, total radial stress are barely 

affected. Due to a very small radius, the centrifugal force is 
negligible. Therefore, this result seems reasonable due to the very 

small radius.

 
 

Table 3. The effect of angular velocity on the total non-dimensional radial stress (×10-5) 

𝑟̅ 
ω 

0 102 105 108 1010 

0.2 0.570078 0.570078 0.570078 0.570081 0.595948 

0.3 7.88574 7.88574 7.88574 7.88575 8.0253 
0.4 11.4694 11.4694 11.4694 11.4694 11.6606 

0.5 12.2243 12.2243 12.2243 12.2243 12.4339 
0.6 11.2664 11.2664 11.2664 11.2664 11.4706 

0.7 9.19595 9.19595 9.19595 9.19596 9.37528 

0.8 6.35429 6.35429 6.35429 6.3543 6.49103 
0.9 3.02204 3.02204 3.02204 3.02205 3.09953 

1 -0.24309 -0.243085 -0.243085 -0.243085 -0.242199 

4. Conclusions 
In this paper, thermoelastic analysis of a rotating nanodisk with 

non-uniform thickness based on strain gradient theory is presented. 
Numerical results show that use of nanodisk with variable thickness 

is more appropriate. Main findings are; 
1- Results show that we can control stresses by using variable 

thickness. 
2- Temperature at outside radius has a direct effect on radial 

displacement of nanodisk. It is seen that the location of 
maximum high-order stresses is not affected by temperature 

and the location of peak high-order stresses depend on m, 
only. 

3- Additionally, any change in the temperature profile within 
the nanodisk (in terms of any increase in the temperature at 

the outer radius) has a direct effect on radial displacements 
as well as induced stresses along the nanodisk radius. The 

radial displacement increases as the temperatures at outer 
radii increases. On the other hand, results indicate that it can 

reduce total radial stress and maximum total radial stress 
location by using variable thickness. 
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