[1] L. Wang, Y. Tang, Lump solutions of the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation via Wronskian solutions, Journal of Applied Mathematics and Computing, Vol. 71, 04/22, 2025.
[2] B. Yasmeen, K. Ahmad, A. Akgül, Q. Al-Mdallal, Analytic solutions of the time-fractional Boiti-Leon-Manna-Pempinelli equation via novel transformation technique, Scientific reports, Vol. 15, No. 1, pp. 17536, 2025.
[3] H. Esen, A. Secer, M. Ozisik, M. Bayram, Obtaining soliton solutions of the nonlinear (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation via two analytical techniques, International Journal of Modern Physics B, Vol. 38, No. 01, pp. 2450010, 2024.
[4] M. Hendy, M. Ezzat, E. Al-lobani, A. Hassan, A PROBLEM IN FRACTIONAL ORDER THERMO-VISCOELASTICITY THEORY FOR A POLYMER MICRO-ROD WITH AND WITHOUT ENERGY DISSIPATION, Advances in Differential Equations and Control Processes, Vol. 31, pp. 583-607, 10/25, 2024.
[5] Y. El-dib, A heuristic review on the homotopy perturbation method for non-conservative oscillators, 05/07, 2022.
[6] W. Hou, N. Qie, J. He, J. Ma, M. Gao, Z. Chen, C.-H. He, Unveiling Diverse Exact Solutions and Fractional-Order Effects in the Modified Korteweg-de Vries Equation via the Exp-function Method, Fractals, Vol. 34, 09/30, 2025.
[7] Y.-P. Liu, J.-H. He, A fast and accurate estimation of amperometric current response in reaction kinetics, Journal of Electroanalytical Chemistry, Vol. 978, pp. 118884, 2025/02/01/, 2025.
[8] Y. Tian, Y. Shao, Y. Shen, J.-H. He, A variational principle of an electrohydrodynamic fluid, Modern Physics Letters A, Vol. 40, No. 04, pp. 2450223, 2025.
[9] C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) system, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33, No. 1, pp. 351-359, 2022.
[10] C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) system, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33, No. 1, pp. 351-359, 2023.
[11] S. Kachapi, S. Kachapi, COMPARISON OF NONCLASSICAL CONTROLLERS ON NONLINEAR VIBRATIONS ANALYSIS OF PIEZOELECTRIC NANORESONATOR, Facta Universitatis, Series: Mechanical Engineering, Vol. 23, pp. 311, 08/05, 2025.
[12] G. Feng, A CIRCULAR SECTOR VIBRATION SYSTEM IN A POROUS MEDIUM, Facta Universitatis, Series: Mechanical Engineering, 2023.
[13] C.-H. He, C. Liu, Variational principle for singular waves, Chaos, Solitons & Fractals, Vol. 172, pp. 113566, 07/01, 2023.
[14] K.-L. Wang, C.-H. He, A remark on Wang's fractal variational principle, Fractals, Vol. 27, 09/06, 2019.
[15] J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, Vol. 19, pp. 847-851, 03/01, 2004.
[16] J. Lu, M.-J. Chen, Variational approach to time-space fractional coupled Boiti-Leon-Pempinelli equation, Thermal Science, Vol. 29, pp. 1757-1765, 01/01, 2025.
[17] C.-H. Shang, H.-A. Yi, Solitary wave solution for the non-linear bending wave equation based on He’s variational method, Thermal Science, Vol. 28, No. 3 Part A, pp. 1983-1991, 2024.
[18] Y. Tian, Variational principle and periodic wave solutionals for elastic rod equation with fractal derivative, Thermal Science, Vol. 29, No. 3 Part A, pp. 1871-1881, 2025.
[19] M. Hart-Simmons, A. Biswas, Y. Yıldırım, S. P. Moshokoa, A. Dakova, A. Asiri, Optical soliton perturbation with the concatenation model: semi-inverse variation, 2023.
[20] X.-Q. Cao, S.-H. Xie, H.-Z. Leng, W.-L. Tian, J.-L. Yao, Generalized variational principles for the modified Benjamin-Bona-Mahony equation in the fractal space, Thermal Science, Vol. 28, No. 3 Part A, pp. 2341-2349, 2024.
[21] J. Sun, Fractal solitary waves of the (3+ 1)-dimensional fractal modified KdV-Zakharov-Kuznetsov, Thermal Science, Vol. 28, No. 3 Part A, pp. 1967-1974, 2024.
[22] A. Alsisi, Analytical and numerical solutions to the Klein–Gordon model with cubic nonlinearity, Alexandria Engineering Journal, Vol. 99, pp. 31-37, 2024.
[23] A. Biswas, A. H. Kara, N. AGYEMAN–BOBIE, M. HART–SIMMONS, S. P. Moshokoa, L. Moraru, F. M. Mohammed, Y. Yildirim, OPTICAL SOLITONS WITH ARBITRARY INTENSITY AND CONSERVATION LAWS OF THE PERTURBED RESONANT NONLINEAR SCHRODINGER'S EQUATION, Ukrainian Journal of Physical Optics, Vol. 26, No. 2, pp. 02097-02103, 2025.
[24] F.-Y. Wang, J.-S. Sun, Solitary wave solutions of the Navier-Stokes equations by He's variational method, Thermal Science, Vol. 28, No. 3 Part A, pp. 1959-1966, 2024.
[25] K. Wang, K. Yan, F. Shi, G. Li, X. Liu, Qualitative study of the (2+ 1)-dimensional BLMPE equation: Variational principle, Hamiltonian and diverse wave solutions, AIMS MATHEMATICS, Vol. 10, No. 11, pp. 26168-26186, 2025.