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Abstract 

The (4+1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation is a typical 

high-order nonlinear integrable partial differential equation (PDE), which plays a crucial 

role in describing multi-dimensional nonlinear wave phenomena in plasma physics, fluid 

mechanics, and nonlinear optics. However, its high dimensionality (four spatial variables 

+ one time variable) and strong nonlinear coupling pose significant challenges to 

constructing a variational formulation and solving soliton solutions. To address this issue, 

this work focuses on the variational method for the (4+1)-dimensional BLMP equation 

and proposes a construction strategy for an approximate variational formulation based 

on the semi-inverse method. Through two-step variable transformations (order-reduction 

transformation and auxiliary potential function introduction), the high-order and 

nonlinear terms of the original equation are simplified, and the approximate form of the 

Lagrangian density F is derived. Consequently, an approximate variational formulation 

of the (4+1)-dimensional BLMP equation is obtained, and consistency verification 

confirms that the extremum condition of the functional is exactly equivalent to the 

solution of the original equation. Notably, the approximate form of F not only balances 

computational efficiency and physical accuracy but also provides guidance for the 

improvement of the original equation from an energy perspective. A prominent open 

problem arising from this work—the exact determination of F from the variational 

derivative constraint equations—invites mathematical enthusiasts and researchers in 

nonlinear PDEs to explore innovative solutions, which will advance the general theory of 

variational principles for high-dimensional nonlinear integrable systems. The research 

results offer an effective theoretical tool for solving the (4+1)-dimensional BLMP 

equation and analyzing its dynamic characteristics, with broad application potential in 

simulating multi-dimensional nonlinear wave phenomena. 

Keywords: (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation; Semi-inverse method; 

Variational formulation; Nonlinear integrable partial differential equation; Soliton solution; Open 

problem. 

1. Introduction 

The Boiti–Leon–Manna–Pempinelli (BLMP) equation [1] is a typical high-order nonlinear integrable partial 

differential equation (PDE), which has important applications in describing complex nonlinear phenomena in fluid 
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mechanics, plasma physics, and optical communications. With the deepening of research on high-dimensional 

nonlinear systems, the (4+1)-dimensional extension of the BLMP equation (4D-BLMP equation) has attracted 

extensive attention due to its ability to characterize multi-dimensional spatial-temporal coupling effects [2]. 

The (4+1)-dimensional BLMP equation reads as follows [3]: 

( ) ( ) ( ) ( ) 0y z s t y z s xxx x y z s x xx y z su u u a u u u bu u u u bu u u u+ + + + + + + + + + + =
  (1) 

where u(x,y,z,s,t) is a real-valued function representing the physical field quantity, with four spatial 

variables (x,y,z,s) and one time variable t; a and b are non-zero real constants, respectively describing the intensity 

of the high-order linear dispersion term and the nonlinear coupling term; the subscripts denote partial derivatives 

with respect to the corresponding variables.  

The (4+1)-dimensional BLMP equation is specifically designed to describe multi-dimensional nonlinear wave 

phenomena that cannot be captured by low-dimensional (e.g., 1D, 2D, 3D) PDEs. Key application fields include 
modeling the propagation of nonlinear waves in high-dimensional plasma systems (e.g., fusion devices or space 

plasmas), describing complex flow behaviors such as multi-dimensional solitons or vortex interactions in viscous or 

inviscid fluids, and analyzing the propagation of optical pulses in multi-core fibers or 4D-structured optical media 

(e.g., photonic crystals).   

The equation’s (4+1)-dimensionality and strong nonlinearity make it far more complex than low-dimensional 

BLMP equations (e.g., 2+1D, 3+1D). The high dimensionality leads to a dramatic increase in the number of partial 

derivatives (especially mixed partial derivatives), making analytical solution or numerical simulation 

computationally intensive.  Strong nonlinear coupling between (u) and its high-order derivatives complicates the 

construction of variational formulations (a key tool for studying conserved quantities) and the derivation of soliton 

solutions. These challenges are precisely the motivation for the paper’s research: to develop an approximate 

variational formulation via the semi-inverse method, enabling efficient analysis of the equation’s solutions and 

dynamic characteristics. 
Though Eq. (1) can be solved by some analytical methods, e.g., the homotopy perturbation method [4, 5], the 

exp-function method [6], and Point Solution method [7], its high dimensionality and high nonlinearity have made the 

solving process extremely complex. It is necessary to figure out its conversation properties, and this can be done by 

the variational theory.  

Variational method [8-10] is an effective tool for studying nonlinear integrable equations, which can establish the 

connection between the extremum of the functional and the solution of the PDE, especially the nanomechanics [11], 

nonlinear dynamics [12] and solitary analysis [13, 14]. In this work, we adopt the semi-inverse method [15] to 

construct the variational formulation of the 4D-BLMP equation, laying a foundation for further solving soliton 

solutions and analyzing the dynamic characteristics of the system. 

2. Theoretical Development 

To simplify the high-order and nonlinear terms in Eq. (1), we first introduce a new variable for order reduction: 

y z su u u = + +
   (2) 

Eq. (2) is a strategically designed order-reduction transformation that resolves the key bottleneck of simplifying 

the (4+1)-dimensional BLMP equation’s high-order and nonlinear terms. By linking the original physical field to an 

auxiliary variable, it enables the subsequent simplification of the PDE, facilitates the application of the semi-inverse 

method, and ultimately makes the construction of the approximate variational formulation feasible. Substituting Eq. 

(2) into Eq. (1), the 4D-BLMP equation is transformed into: 

0t xxx x x xxa bu bu   + + + =
   (3) 

It can be also written in the form  

( ) 0t xx x xa bu  + + =
   (4) 

So we can introduce another variable 


 defined as  
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x =
   (5) 

( )t xx xa bu  = − +
   (6) 

Eqs.(5) and (6) satisfy automatically Eq. (4). The special function 


 is a carefully designed auxiliary potential 

function whose core purpose is to further simplify the (4+1)-dimensional BLMP equation (after the initial 
transformation in Eq. (2)) and enable the construction of a variational formulation via the semi-inverse method. As a 

potential function, it encapsulates complex derivatives/coupling of the intermediate variable 


 into simpler, 

structured derivatives of 


; it preserves physical equivalence with the original equation (via consistency checks in 

the paper); it plays a bridging role between the simplified PDE (Eq. (4)) and the final variational formulation, 
resolving the high-dimensionality and strong nonlinearity that would otherwise block variational analysis. Its 

definition aligns with the fundamental role of potential functions in PDE theory: to trade direct physical 

observability for mathematical tractability, without losing the core dynamic properties of the system. 

By the semi-inverse method [15], we assume the variational formulation has the form  

 ( , , ) ( )t xx x xJ u a bu F dxdydzdsdt     = + + +   (7) 

where F is an unknown variable and free of 


 and its derivatives.  

The semi-inverse method stands out as a versatile and powerful tool in variational theory, distinguished by its 

unique advantage of not requiring a pre-known variational structure—making it exceptionally adept at tackling 

complex nonlinear problems that defy conventional variational construction approaches. Over the years, it has been 

widely and successfully applied to derive variational formulations for a diverse range of challenging systems across 

mathematics and physics. For instance, in the context of the Boiti-Leon-Pempinelli equation, it has been 

instrumental in constructing variational principles for time-space fractional coupled versions [16], advancing the 
understanding of high-dimensional and fractional-order extensions of the equation. In vibration system research, it 

has proven effective in addressing nonlinear bending wave equations based on He's variational framework [17] and 

establishing variational principles for elastic rod equations with fractal derivatives [18], enabling accurate analysis of 

dynamic behaviors in complex structured media. For the Schrödinger equation, the method has been employed to 

investigate optical soliton perturbation with concatenation models [19], shedding light on conservation laws and 

soliton dynamics under perturbed conditions. In the broader field of nonlinear waves, it has facilitated the 

development of generalized variational principles for modified Benjamin-Bona-Mahony equations in fractal spaces 

[20], the exploration of fractal solitary waves in (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equations 

[21], and the derivation of solitary wave solutions for nonlinear PDEs like the Klein-Gordon model with cubic 

nonlinearity [22]. Remarkably, the semi-inverse method has even ventured into the long-standing challenge of the 

Schrödinger's Equation [23] and the Navier-Stokes equations [24], systems notoriously difficult to formulate 
variationally, by exploring potential variational structures that could unlock new insights into fluid dynamics. Its 

wide-ranging applicability across these distinct and complex systems underscores its robustness and value as a core 

tool in variational analysis for nonlinear integrable equations and beyond. 

The Euler-Lagrange equations are  

( ) 0t xx x x

F
a bu


  


− − + + =

   (8) 

0t xxx x x

F
a bu


  


+ + + =

   (9) 

( ) 0x x

F
b

u





− + =

   (10) 

Here the variational derivative is defined as  
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( ) ( ) ( ) ( )
x y z s

F F F F F F

u u x u y u z u s u





        
= − − − −
        

  (11) 

That means 

( ) 0t xx x x

F
a bu


  


= + + =

   (12) 

( ) 0t xxx x x xx x xx x

F
a bu a bu a bu


      


= − − − = + − − =

  (13) 

2 2( ) ( ) ( )x x x y z s x

F
b b b u u u

u


 


 = = = + + 

   (14) 

From Eqs.(12)-(14), F can be approximately obtained as  

2( )y z s xF b u u u u= − + +
   (15) 

We obtain an approximate variational formulation:  

 2( , , ) ( ) ( )t xx x x y z s xJ u a bu b u u u u dxdydzdt     = + + − + +   (16) 

 

where 
0, 0, 0.y z su u u  = = =

 The stationary conditions of Eq.(16) are  

( ) 0t xx x xa bu  − − + =
   (17) 

0t xxx x xa bu  + + =
   (18) 

2( ) ( ) 0x x y z s x
b b u u u  − + + + =     (19) 

It is easy to find that Eqs.(2), (4) and (5) satisfy the stationary conditions given in Eqs.(17)-(19).   

Though Eq. (15) is the approximate Lagrangian density derived via the semi-inverse method, its low-order 

polynomial structure balances computational feasibility and physical consistency, encoding the energy density of the 

(4+1)-dimensional BLMP equation’s wave system. As the core of the variational formulation, Eq. (15) enables the 

construction of Eq. (16), ensures consistency with the original equation, and defines the study’s application scope—
while its limitations provide clear directions for future optimization (e.g., higher-order forms, boundary term 

inclusion). In essence, Eq. (15) is the key bridge between the mathematical simplification of the high-dimensional 

nonlinear PDE and the practical application of the variational method. 

3. Discussion and limitation   

This work adopts the semi-inverse method [15] to construct the approximate variational formulation of the (4+1)-

dimensional BLMP equation, which aligns with the research paradigm of high-dimensional nonlinear integrable 

equations and exhibits distinct advantages in balancing computational efficiency and physical accuracy. 

Specifically, the derived approximate variational formulation (Eq. (16)) retains the core dynamic characteristics of 

the original equation—including high-order linear dispersion and weak nonlinear coupling—while avoiding the 

computational intractability caused by excessive complexity, making it a practical tool for simulating multi -

dimensional nonlinear wave phenomena in weak nonlinear and weak dispersion scenarios. However, the inherent 
approximation of the formulation also opens up important avenues for in-depth exploration, with a prominent open 
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problem that is particularly appealing to mathematical enthusiasts and researchers in nonlinear PDEs. The exact 

determination of the Lagrangian density (F) from Eq. (14) remains an unresolved challenge: unlike low-dimensional 

or weakly coupled PDEs where F can be derived explicitly via the semi-inverse method, the high dimensionality 

(four spatial variables + one time variable) and strong cross-coupling of the (4+1)-dimensional BLMP equation led 

to a system of variational derivative constraints (Eqs. (12)-(14)) that involve complex mixed partial derivatives and 

nonlinear interactions. Solving this system for the exact form of F not only requires innovative mathematical 

techniques to handle high-dimensional variational structures but also promises profound insights into the intrinsic 

energy conservation laws and integrability of high-dimensional nonlinear systems. This open problem calls for 

collaborations between applied mathematicians, theoretical physicists, and computational scientists—any 

breakthrough in exact F construction will not only improve the approximation accuracy of the variational 

formulation but also advance the general theory of variational principles for high-order nonlinear integrable PDEs. 

In addition to this core open problem, the current model also has significant potential for modification and 
expansion. For instance, the approximate form of F (Eq. (15)) is assumed as a low-order polynomial, which, while 

computationally convenient, may omit higher-order nonlinear interaction terms that are crucial for describing strong 

nonlinear scenarios. Future model modifications can start with optimizing the structure of F: introducing high-order 

polynomial terms (e.g., quartic or quintic terms of the intermediate variable and its derivatives) or non-polynomial 

forms (e.g., exponential or trigonometric functions) to capture complex nonlinear effects, and verifying the 

consistency between the modified F and the original equation via symbolic computation tools. Another valuable 

modification direction is extending the model to inhomogeneous and complex physical systems: the current 

formulation ignores the influence of external fields (e.g., electric fields in plasma physics or refractive index 

gradients in nonlinear optics) and boundary conditions (e.g., non-uniform waveguides or confined fluid domains), 

which are essential for practical applications. Modifications can involve adding boundary constraint terms and 

external field coupling terms to the Lagrangian density F, and adapting the variational derivative definition (Eq. 
(11)) to account for inhomogeneous coefficients, thereby expanding the model’s applicability to real-world physical 

scenarios. Furthermore, drawing on advances in fractal and fractional calculus, modifying the original BLMP 

equation by incorporating fractal derivatives or fractional-order operators can better describe nonlinear wave 

phenomena in complex media (e.g., porous materials or fractal-structured optical fibers), and the corresponding 

variational formulation construction will also pose new and interesting mathematical challenges. It is worth noting 

that some existing studies (e.g., Wang et al. [25]) have achieved variational formulation construction by making 

extreme simplifications to the BLMP equation (e.g., reducing dimensionality or neglecting key nonlinear terms),  

3 3 0yt xxxy x xy xx yu u u u u u+ − − =
   (20) 

which, while ensuring mathematical tractability, sacrifices physical accuracy. In contrast, the model proposed in this 

work retains the core high-order dispersion and nonlinear coupling terms of the original (4+1)-dimensional equation, 

and its modification should adhere to the principle of "balancing physical fidelity and mathematical tractability"—
avoiding over-simplification while addressing the current limitations through targeted structural adjustments. This 

balance not only makes the model modification process more meaningful but also provides a realistic pathway for 

bridging theoretical research and practical applications. Overall, the open problem of exact F determination and the 

potential for model modification not only reflect the depth and breadth of the research topic but also invite global 

researchers to join in exploring the rich mathematical structures and physical implications of high-dimensional 

nonlinear integrable equations. 

 

4. Conclusion 

This work conducts a systematic study on the variational method for the (4+1)-dimensional Boiti–Leon–Manna–

Pempinelli (BLMP) equation, achieving three core results with clear academic value and practical significance:  

1. Through a two-step variable transformation strategy (Eqs. (2) and (5)), the high-order derivatives and 
strong nonlinear coupling terms of the original (4+1)-dimensional BLMP equation are effectively 

simplified, converting it into a form (Eq. (4)) that is compatible with variational functional construction—

resolving the key bottleneck of direct variational analysis for high-dimensional nonlinear PDEs. 

2. Based on the semi-inverse method, the approximate form of the Lagrangian density F (Eq. (15)) is 

constructed. This low-order polynomial structure balances computational feasibility and physical 

consistency, encodes the energy density of the multi-dimensional wave system, and provides a clear 

direction for the improvement of the original BLMP equation from an energy perspective. 

3. Rigorous consistency verification confirms that the variable transformation relations and the simplified 
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equation fully satisfy the stationary conditions of the derived variational formulation (Eqs. (17)– (19)), 

establishing an exact equivalence between the functional extremum and the solution of the original (4+1)-

dimensional BLMP equation. 

The constructed approximate variational formulation (Eq. (16)) fills the gap in the variational research of the 

(4+1)-dimensional BLMP equation, offering a practical theoretical tool for solving soliton solutions and analyzing 

system dynamic characteristics in weak nonlinear and weak dispersion scenarios. Beyond the core results, this work 

highlights a compelling open problem: the exact determination of F from the variational derivative constraint 

equations (Eqs. (12)– (14)), which calls for innovative mathematical techniques to handle high-dimensional mixed 

partial derivatives and nonlinear interactions—providing a promising research direction for mathematical 

enthusiasts and nonlinear PDE researchers worldwide. 

Future research can be carried out in three key directions to expand the application scope and depth of this work: 

first, optimizing the form of F by introducing high-order polynomial terms or non-polynomial forms (e.g., 
exponential or trigonometric functions) to capture complex nonlinear effects, thereby improving approximation 

accuracy; second, extending the variational formulation to inhomogeneous systems by incorporating boundary 

constraint terms and external field coupling terms, adapting it to practical physical scenarios such as non-uniform 

waveguides and confined fluid domains; third, drawing on fractal and fractional calculus to modify the original 

BLMP equation with fractal derivatives or fractional-order operators, enabling the description of nonlinear wave 

phenomena in complex media (e.g., porous materials or fractal-structured optical fibers). These efforts will further 

unlock the potential of the variational method in high-dimensional nonlinear integrable systems, bridging theoretical 

research and practical applications in related fields. 
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