[1] J. Reddy, Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering - INT J NUMER METHOD ENG, Vol. 47, pp. 663-684, 01/10, 2000.
[2] J. Reddy, J. I. Barbosa, On vibration suppression of magnetostrictive beams, Smart Materials and Structures, Vol. 9, pp. 49, 02/22, 2000.
[3] J. Reddy, C. Wang, G. Lim, K. Ng, Bending solutions of Levinson beams and plates in terms of the classical Theories, International Journal of Solids and Structures - INT J SOLIDS STRUCT, Vol. 38, pp. 4701-4720, 06/01, 2001.
[4] M. Touratier, An efficient standard plate theory, International Journal of Engineering Science, Vol. 29, No. 8, pp. 901-916, 1991/01/01/, 1991.
[5] J. Mantari, A. Oktem, C. G. Soares, A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, International Journal of Solids and Structures, Vol. 49, No. 1, pp. 43-53, 2012.
[6] A. M. A. Neves, A. J. M. Ferreira, E. Carrera, C. M. C. Roque, M. Cinefra, R. M. N. Jorge, C. M. M. Soares, A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Composites Part B: Engineering, Vol. 43, No. 2, pp. 711-725, 2012/03/01/, 2012.
[7] C. Abdelbaki, Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations, Frattura ed Integrità Strutturale, Vol. 14, pp. 115-126, 12/04, 2019.
[8] A. M. Zenkour, A simple four-unknown refined theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, Vol. 37, No. 20, pp. 9041-9051, 2013/11/01/, 2013.
[9] D. Shahsavari, M. Shahsavari, L. Li, B. Karami, A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation, Aerospace Science and Technology, Vol. 72, pp. 134-149, 2018/01/01/, 2018.
[10] A. Garg, T. Mukhopadhyay, M. O. Belarbi, H. D. Chalak, A. Singh, A. M. Zenkour, On accurately capturing the through-thickness variation of transverse shear and normal stresses for composite beams using FSDT coupled with GPR, Composite Structures, Vol. 305, pp. 116551, 2023/02/01/, 2023.
[11] S. S. Akavci, A. H. Tanrikulu, Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories, Composites Part B: Engineering, Vol. 83, pp. 203-215, 2015/12/15/, 2015.
[12] Y. S. Joshan, S. Santapuri, N. Grover, Analysis of laminated piezoelectric composite plates using an inverse hyperbolic coupled plate theory, Applied Mathematical Modelling, Vol. 82, pp. 359-378, 2020/06/01/, 2020.
[13] A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, C. M. M. Soares, A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates, Composite Structures, Vol. 94, No. 5, pp. 1814-1825, 2012/04/01/, 2012.
[14] Q.-H. Pham, V. Ke Tran, T. Thanh Tran, V. Chinh Nguyen, A. M. Zenkour, Nonlocal higher-order finite element modeling for vibration analysis of viscoelastic orthotropic nanoplates resting on variable viscoelastic foundation, Composite Structures, Vol. 318, pp. 117067, 2023/08/15/, 2023.
[15] S. Sarangan, B. N. Singh, Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories, Composite Structures, Vol. 138, pp. 391-403, 2016/03/15/, 2016.
[16] K. P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica, Vol. 94, No. 3, pp. 195-220, 1992/09/01, 1992.
[17] A. M. Zenkour, H. D. El-Shahrany, Quasi-3D theory for the vibration and deflection of a magnetostrictive composite plate resting on a viscoelastic medium, Composite Structures, Vol. 269, pp. 114028, 2021/08/01/, 2021.
[18] M. Malikan, V. A. Eremeyev, A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition, Composite Structures, Vol. 249, pp. 112486, 2020/10/01/, 2020.
[19] Y. Khalfi, A. Bouchikhi, Y. Bellebna, Mechanical Stability Investigation of Advanced Composite Plates Resting on Elastic Foundations Using a New Four-Unknown Refined Theory, Frattura ed Integrità Strutturale, Vol. 13, pp. 208-221, 03/05, 2019.
[20] M. Aydogdu, A new shear deformation theory for laminated composite plates, Composite Structures - COMPOS STRUCT, Vol. 89, pp. 94-101, 06/01, 2009.
[21] H.-T. Thai, D.-H. Choi, Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates, Composites Part B: Engineering, Vol. 56, pp. 705-716, 2014/01/01/, 2014.
[22] M. Bouazza, A. Zenkour, Hygrothermal environmental effect on free vibration of laminated plates using nth-order shear deformation theory, Waves in Random and Complex Media, Vol. 34, pp. 1-17, 04/05, 2021.
[23] S. Merdaci, A. H. Mostefa, Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory, Fracture and Structural Integrity, Vol. 14, No. 51, pp. 199-214, 11/25, 2019.
[24] P. V. Vinh, A. M. Zenkour, Vibration analysis of functionally graded sandwich porous plates with arbitrary boundary conditions: a new general viscoelastic Winkler–Pasternak foundation approach, Eng. with Comput., Vol. 41, No. 6, pp. 4125–4153, 2025.
[25] N. Hebbar, I. Hebbar, D. Ouinas, M. Bourada, Numerical modeling of bending, buckling, and vibration of functionally graded beams by using a higher-order shear deformation theory, Frattura ed Integrità Strutturale, Vol. 14, pp. 230-246, 03/03, 2020.
[26] M. Rabehi, R. Billel, M. Meradjah, A. Zenkour, Porosity Investigations on Dynamic Responses of FG Plates via a Modified Quasi-3D Shear Deformation Theory, Journal of Vibration Engineering & Technologies, Vol. 141, 01/22, 2025.
[27] H. D. El-Shahrany, Porosity-Dependent Frequency Analysis of Bidirectional Porous Functionally Graded Plates via Nonlocal Elasticity Theory, Mathematics, Vol. 13, No. 16, pp. 2688, 2025.
[28] l. thanh cuong, K. Nguyen, N. Nguyen, S. Khatir, H. Nguyen-Xuan, M. Abdel Wahab, A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA, Composite Structures, Vol. 31 October 2020, 10/31, 2020.
[29] M. Slimane, A. Hadj Mostefa, O. Khayal, Natural frequencies of FG plates with two new distribution of porosity, International Journal of Applied Mechanics and Engineering, Vol. 26, pp. 128-142, 06/27, 2021.
[30] M. Kenanda, F. Hammadi, Z. Belabed, M. Meliani, Free vibration analysis of porous functionally graded plates using a novel Quasi-3D hyperbolic high order shear deformation theory, Frattura ed Integrità Strutturale, Vol. 64, pp. 266-282, 2023.
[31] S. Hosseini-Hashemi, M. Fadaee, S. R. Atashipour, A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates, International Journal of Mechanical Sciences, Vol. 53, No. 1, pp. 11-22, 2011/01/01/, 2011.
[32] F. Ebrahimi, M. Barati, A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, Vol. 107, pp. 169-182, 10/01, 2016.
[33] F. Ebrahimi, A. Dabbagh, Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory, Waves in Random and Complex Media, Vol. 30, pp. 1-20, 07/02, 2018.
[34] P. Hoa, N. Hoàng Thịnh, T. Ke, A. Zenkour, Hygro-thermo-mechanical vibration analysis of functionally graded porous curved nanobeams resting on elastic foundations, Waves in Random and Complex Media, pp. 1-32, 02/16, 2023.
[35] H. El-Shahrany, A. Zenkour, A nonlocal vibration suppression for a multilayered magneto-viscoelastic nanobeam on a three-parameter-type medium, Mechanics of Advanced Materials and Structures, Vol. 31, pp. 1-12, 11/22, 2023.