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Abstract

This study investigates the free vibration behavior of porous functionally
graded plates (PFGPs) within the context of nonlocal strain—gradient
elasticity theory. Two different porosity distribution types are examined, and
the thickness-wise variation of material properties is modeled by means of an
enhanced power-law scheme. The kinematic description is formulated based
on a refined higher-order shear deformation plate theory that inherently
enforces zero transverse shear stresses at the plate surfaces, thus evading the
usage of shear correction factors. The governing equations of motion for the
nonlocal model are derived via Hamilton’s principle and explained
analytically to get the natural frequencies of the PFGPs. A detailed parametric
analysis is performed to assess the effects of the nonlocal parameter, internal
material length scale, power-law exponent, wave number, and porosity
parameters on the vibrational characteristics. The validity and effectiveness
of the current preparation are confirmed through comparisons with existing
results obtainable in the literature.

Keywords: Functionally graded plate; porosity; nonlocal strain-stress gradient theory (NSGT); higher-
order normal and shear deformations theory

1. Introduction

Functionally graded materials (FGMs) have been developed to meet the growing demands of advanced engineering
applications due to their superior mechanical and thermal characteristics, such as enhanced resistance to oxidation,
corrosion, and high-temperature environments. These materials belong to a class of composite structures in which
material constituents vary continuously through the thickness, resulting in a smooth transition of properties and
reduced stress concentrations compared with conventional layered composites.

Extensive research has been dedicated to the mechanical actions of FGM-based structures using high-order shear
deformation theories, including bending, buckling, and vibration. Early contributions by Reddy and co-workers [1-3]
employed third-order shear deformation theory to investigate the responses of isotropic and FG beams and plates.
Subsequently, numerous refined shear deformation models were proposed to achieve more accurate representations
of transverse shear effects through various shape functions, such as trigonometric, hyperbolic, exponential,
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exponential-logarithmic, trigonometric—exponential, and polynomial forms [4-27].

During the fabrication of FGMs, imperfections such as porosity may arise, significantly influencing stiffness and
overall mechanical performance and increasing susceptibility to damage. Consequently, incorporating porosity effects
into structural modelling has become essential. Several studies have addressed this issue by examining the mechanical
responses of porous FGM structures. El-shahrany [27] analyzed the normal and shear deformations of unidirectional
and bi-directional porous FGM nano plate with three constituents, employing hyperbolic shear/normal deformations
theory and Eringen’s nonlocal elasticity theory. Cuong-Le et al. [28] examined buckling and free vibration of porous
FG annular plate and shell structures with graded porosity distributions. Slimane et al. [29] and Kenanda et al. [30]
explored the impact of the porosity distributions and thickness stretching on the vibration behaviour of smart FG-
based plates. Additional works have employed high-order and quasi-3D theories to capture the coupled impacts of
shear deformations, thickness stretching, and porosity on dynamic responses [31-33]. Moreover, Pham et al. [34] used
the Rayleigh—Ritz method and Chebyshev polynomials to discuss the hygro-thermo-mechanical loading effect on
behaviour of the porous functionally graded curved nano beam rested on an elastic foundation.

FG porous nanoplate

Fig 1: A dimensional configuration of the proposed porous FG plate

2. Theoretical nonlocal strain-stress gradient theory

The stresses take into account the influences of nonlocal-elastic stresses besides strain gradient stresses according
to the NSGT. Then, the stress field can be expressed as [33]

=50 &)
oy =0y — Vo7, (1

in which the classical stresses al.(;)) can be displayed as

0 L, ! ! ’ !
al.(j) = [ Cijao(x, X', ega)e (x)dx, (2)
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and the high-order nonlocal stresses o;;* can be expressed as

s

L.
= Py (X, e;a)e, (x)dx', 3)

where C;j; represents the elastic coefficient and e;a, i = 0,1 are the nonlocality parameters. The parameter [ accounts
for the strain gradient impacts. The following equation describes the constitutive relation of NSGT [32]:

[1 = (epa)*V2][1 = (e,0)?V?]0yj = E;jul[1 — (e,0)2V?] ey — I2[1 = (e0a)?V*|V2gy, 3, 4)
where V2= 07 + 0. Consider e, = e; = e and y = ea, hence
a1- #zvz)o'ij = Eijkl(l —PV%)gy. (%)

Furthermore, the constitutive relations in Eq. (5) can be simplified to the following cases:
- By putting Il = 0 in Eq. (5), the constitutive model of the non-local elasticity theory [35] can be given as

a- #zvz)o'ij = Cijri€nt- (6)

- By putting u = 0 in Eq. (5), the constitutive model of the strain gradient theory can be obtained as
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0ij = Cijra(1 — PV?)gy. (7

3. PFG-based material properties

A porous rectangular plate of FG material with a thickness h, a length a, and a width b containing the top ceramic
surface and the bottom metal surface, as seen in Fig. 1. A following power-law function is employed to describe the
porous FG plate properties, including mass density p, the elastic modulus E as

NP

N(a) = M + (e = 1) (5 43) + 2 )

where p is the power law, respectively. Moreover, the term x can be determined for a perfect FGM as x = 0, for even
distribution of porosity as x = —g(nc +71,), 0<B <1, and for uneven distribution of porosity as x =

—= (nc + 1) (1 — M) where 8 is the porosity constant.

3.1. Problem formulation
By considering the effect of the thickness extension, the displacements can be represented as

Uy(x,y,z,t) = uy (x,y,t) —z +F(Z)¢>1(x y,t),

6u3

+ F(2)$,(x, y, 1),
U3(x: y! Z, t) = u3(x' y' t) + F (Z)¢3(x!y! t),
F(z) = hsinh(z/h) — (4z3/3h?) cosh(1/2),

where u,, u,, and u; are the mid-plane displacement components and ¢;, i =1, 2, and 3 are the rotation components
along the x, y, and z directions.
The linear strains of a porous system are defined as

e =aﬂ_ 6u3+F()6¢ol gyzaﬁ— 6u3+F()5¢2 £Z=FII(Z)¢3’

U,(x,y,2,t) = uy(x,y,t) —Z )

* o ax ay (10)
=P (6 +2), 1= F'@ (61 +%), iy =22+ 22 - 2,201 p(p) (B2 4 22),
Hooke’s law describes the relationship between the stresses and the strains as
(1 —p?v®)G = ¢;(1 - 12V?)g, (11)
in which
€11 G263 0 0 O
G €22 C23 0 0 O
0 = {Gx' 0y,02: Tyz) Tz Txy}T’ &= {gx' €y €2 Vyz sz'yxy}T= Cij = [6(3)1 682 683 524 8 8 (12)
0 0 0 0¢&s 0
l 0 0 0 0O 566J
The stiffness coefficients ¢;; are given by:
G =G = Gy = el Gy = G = Gy = e, G = B5s = G = 6() = joms,  (13)

where E (z), v, and G(z) are Young’s modulus, Poisson’s ratio, and shear modulus of the porous system, respectively.

3.2. Motion system
Based on Hamilton's principle, the motion system can be given by the next variation form:

Jy (B, + 8E, — 8E,) dt =0, (14)

SE, = fv(axé‘sx +0,8e, + 0,88, + 1,6V, + Ty, 0¥, + Txyc?yxy) dav, (15)



Journal of Computational Applied Mechanics 2026, 57(2): 348-361 351

8E, = — [,qéwdA, (16)

8Ey, = [(0,8U, + U,8U, + U;6U3)p(2) dV, (17)

in which 6E,,, §Es and §Ej calculate variations of the three energies: the potential energy of the applied loads, the
strain energy, and the kinetic energy, respectively.
By using Egs. (15)-(17) into Eq. (14) and substituting Egs. (11)-(13) in (14). The motion system is obtained as:
6u3

Sup: (1 - 2v2) (52 + 52) = (1 - w2V (Tt — T, 52 + Tudhy ),

oN. oN. .. 91
Sup: (1 2V2) (524 52) = (1 = w2V?) (Thil, — T, 52 + Tudh, ),
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oxdy 9y? ox? ay?
¢ ¢
s (52 +552) + Tds) (18)
X asx dt
Sy (1 —12V?) (as += Qx13) =(1-p?v?) (T4u1 Ts = L T6¢1)
8¢y (1 —12V?) (asxy +—= Qyz) =(1-p?v?) (T4u2 Ts 6u3 + T6¢2)

a Qyz

Ss: (1—12v2)(a‘?;2+ py

—N,) = (1 - @2v?)(Tyit; + T8<i53),
where N, M, S, and Q are the moment and the stress resultants, while T;, i = 1, ...,8 represent the moments of inertia,
which are mentioned in Appendix A. The system (18) can be rewritten as:

R Puy duz %py
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¢ 2%¢ L) 2%¢ i) 92 ¢
(1 ) {1 (24 28 ) 550
(24)

a a2
Dy 52+ Gap T = Ky 2 = Lyahs | = (1 = 412V) (Tl + Tydhs).

3.3. Analytical solution
By employing the double Fourier series and Navier's approach, solutions of the equations system that describe the
simply-supported PFG plate are expanded

U, Ui mn €0S(A,x) sin(4,y)
U, Uy Sin(4,x) cos(4,y)
3\ _ yow o U3mn Sin(/llx) Sin(/lzy) iwmnt _ _
b, (= Lm=1Zn=1 b cos(Ax) sin(A,y) [ © , A, =mm/a, A, =nn/b. (25)
o Dy.nn Sin(A;x) cos(1,y)
o3 Dsnn SiN(A4 %) sin(4,y)

The coefficients U;nns Usmns Usmns Prmns> Pomn> and @Ps,,,, must be determined. The coefficient w,y,,, represents
the frequency of (m, n) wavenumbers. Using Fourier's forms in Eq. (24) in Egs. (19)-(23) to obtain

([Si] - ?[P )8} =0, i=1,...6, {8} = Usmn, Uzmns Usmns Promns Pomms Pomn}”
Sin = —[1+ P+ 2D1(A114] + AgeA3), Spp = —[1+ 1P (A] + 19)](AgeA] + A2243),
S33 = —[1 4+ 12(A2 + AD)][E At + A222(2E,, + 4Ege) + EppA3],
Sea = —[14+12(A2 + 23)](Mgs + H 123 + HggA3), Sss = —[1+12(A2 + 22)| (M4 + Hpp A3 + HgoA2),
See = [1+ 12(A + A1 (Lgz — MssAT — Myy23), Siz = —Aidp[1+ 1P(A] + 25)1(Arz + Age),
S13 = [1+ (A} + 29)][B11 A} + 2, 25(By; + 2Be6)],

Sia = —[1+ QAT+ AD]IV1147 + VeeA3), Sis = —AiA,[1+ P(A] + AD)](Vy, + Vi),

Si6 = DisA[1+ P(AF +2A3)], Sp3 = [1 4 12(A + A5)][B243 + A1, (Byy + 2Bgg)],
Spa = =M [1+ P(AF + 2D (Voy + Vie), S5 = —[1+ P(AF + 23] (Ve AL + V;223),

Sz6 = Dazdp[14+ P(A] + 9], S3a = [1+ P(AF + I[F1 23 + 1, 5(F2 + 2Fg6)],

S35 = [1+4 PP(Af + AD][F2 23 + 2, (Fip + 2Fs6)l, Sz = —[1+ 1P(AF + 29)](G13Af + G2343),
Sas = =M [1+ P(AF + 29)](Hyz + Hge), Sas = A1[1+ 12(A] + AD)] (K3 — Mss),
Sse = A2[1+ 1P(AF + AD)](Kp3 — Mys), Piy = Py = [1+p2(A] + 23K,
Pi3 = Py = =LK, [1+ p2(AF + 29)], Py = Pps = [1 + 12 (4] + A3)]K,,
Py3 = Py = —1,K,[1 + p?(A + A3)], Py3 = [1+p?(A] + AD)][K, + K5 (A7 + A3)],
Py, = A [1+ @24 + AD]Ks, Pys = —[1+ p? (A + A9)]4,Ks, Py = Ps, = [1+ p? (4] + 25)]K,,
Pz = —[1+ p?(A] + ADINKs, Phy = Pss = [1+ u2(AF + 23)]K,,
Ps3 = —[1+ @2(A] + AD]1Ks, Pig = Pes = [1 +p?(AF + A3)1K5,
Pse = [1+p*(A] + 23)]Kg, (Pi2,Pa1, Pis, Psy, Pig, Per) = 0,
(P24, P2, Pas, Py, Pser Pos, Pezs Pea) = 0.

The eigenvalue system in Eq. (25) is solved to determine the eigenfrequency values.

(26)

4. Discussions and numerical results

The accuracy and competence of the used theory (see Table 1) are observed in comparison with other analyses in
the literature in this section. The certain parameters influences are investigated, such as the porosity, the geometric
properties, and the power-law index. The non-dimensional parameters and the material properties are defined as

follows:
ﬁzwh\/z, 6=(uh’p—m.
Ec Em

e Non-dimensional parameters:
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e Boundary conditions:
u2=u3=¢2=¢3=Nx=Nz=Mx=Sx=Qyz:0 at XZO,
u1=u3=¢1=¢3=Ny=Nz=My=Sy=QXZ=O at y=0-

e  Material properties and geometry parameters:

»  The properties of Aluminum (Al): E,, = 70 GPa, p,, = 2702 kg/m3, v,, = 0.3.
»  The properties of Alumina (Al,03): E. = 380 GPa, p. = 3800 kg/m3, v, = 0.3.
» p=1Lu=10l=01nm,a/h=10,a/b=1,L=0.1.

To confirm the accuracy of the current formulation in predicting the dynamic response, a numerical sample is
offered for the natural frequencies @ of an Al/Al, 05 FG plate with a/h = 10, as listed in Table 1. This example is
used to examine the impacts of the power-law index. The outcomes gained from the proposed quasi-3D theory show
excellent agreement with those stated by Hosseini-Hashemi et al. [31] based on the first-order shear deformation
theory, El-Shahrany [33] using high-order shear/normal deformation theory, and Kenanda [30] employing a hyperbolic
high-order shear deformation model. Furthermore, when the stretching effect is neglected, the present predictions
closely coincide with the published data. It is also detected that the natural frequency decreases as power law indexes
increase, which can be attributed to the decrease in stiffness of the FG plate caused by the higher metal content, since
the metal phase has a lower Young’s modulus and material density than the ceramic phase.

The fundamental frequencies of a PFGP for simply-supported conditions versus the nonlocality, the porosity
coefficient, and the power law indexes are displaced in Table 2, in the absence of the strain gradient impact. As it
seems, the vibrational frequency decreases by increasing the power-law parameter. On the other hand, increasing the
porosity is always accompanied by a decrease in the frequency of vibration. Moreover, one can observe that the natural
frequencies of PFGP also reduce with increasing the nonlocal parameter.

Table 1: Comparison of frequencies (@) of an FG plate for three values of power law indexes and various wave numbers.

m n Theory Ex, p
1 4 10

1 1 FSDT [37] =0 0.0442 0.0382 0.0366
HSDT [33] #0 0.0448 0.0388 0.0367

HHSDT [40] #0 0.0450 0.0390 0.0369

Present #0 0.0450 0.0390 0.0369

1 2 FSDT [37] =0 0.1059 0.0911 0.0867
HHSDT [40] #0 0.1079 0.0925 0.0869

Present #0 0.1081 0.0925 0.0870

Table 2: The frequencies (@) of a PFG plate for three power law indexes and various values of the porosity and nonlocal parameters (I =

0).
p

pnm g 1 5 10
0.1 0 0.0411 0.0352 0.0337
0.1 0.0404 0.0328 0.0313
0.2 0.0393 0.0285 0.0270
03 0.0376 0.0165 0.0128
03 0 0.0270 0.0231 0.0221
0.1 0.0265 0.0215 0.0206
0.2 0.0258 0.0187 0.0177
03 0.0247 0.0108 0.0084
0.5 0 0.0185 0.0158 0.0151
0.1 0.0181 0.0147 0.0141
0.2 0.0176 0.0128 0.0121
03 0.0169 0.0074 0.0058

Table 3 reports the fundamental frequencies of the PFG nanoplate with simply supported boundary conditions as
functions of the length-scale factor, porosity coefficient, and power-law index, while accounting for nonlocal effects.
The influence of the strain gradient theory is clearly reflected through variation of the length-scale factor {, where an
increase in [ consistently results in higher non-dimensional frequencies for all considered power-law indices. In
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contrast, increasing either the porosity level or the power law indexes tend to a drop in the fundamental frequencies,
indicating a softening of the structural response.

Table 3: The frequencies (@) of a PFG plate for three power law indexes and various values of the porosity and length-scale parameters

(x = 0.1 nm).
p
{nm A 1 5 10
0.1 0 0.0450 0.0385 0.0369
0.1 0.0442 0.0359 0.0343
0.2 0.0430 0.0311 0.0295
0.3 0.0411 0.0180 0.0140
0.3 0 0.0685 0.0586 0.0562
0.1 0.0672 0.0547 0.0522
0.2 0.0654 0.0474 0.0450
0.3 0.0626 0.0274 0.0214
0.5 0 0.1001 0.0857 0.0822
0.1 0.0983 0.0799 0.0763
0.2 0.0956 0.0693 0.0658
0.3 0.0915 0.0401 0.0312

016 L=
~—
4 \\
e
b
0.14- R
............ [ =0.3nm
o 0124 T
———__ l=02nm
0.10 T
[=0.1nm SRS
0.08
0 01 02 03 04

Fig. 2: Variation of frequencies versus the porosity parameters for a PFG nanoplate for different
length scale parameters

Table 4: The nondimensional frequencies () of a PFG nanoplate for some of the power law indexes and three values of the porosity and
thickness ratios (¢ = 0.1 nm).

ha B P
1 5 10
0.05 0 0.0226 0.0195 0.0187
0.1 0.0221 0.0182 0.0174
0.2 0.0215 0.0158 0.0151
0.3 0.0206 0.0090 0.0071
0.1 0 0.0884 0.0757 0.0725
0.1 0.0868 0.0705 0.0674
0.2 0.0844 0.0612 0.0581
0.3 0.0807 0.0354 0.0276
0.15 0 0.1924 0.1625 0.1553
0.1 0.1890 0.1514 0.1438
0.2 0.1840 0.1314 0.1232

0.3 0.1762 0.0770 0.0591
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Figure 2 illustrates the dependency of the vibration frequency of the PFGP on the porosity coefficient for different
values of the length-scale factor. The fundamental frequency increases monotonically with the length scale factor,
regardless of the porosity level. Conversely, increasing the porosity results in a noticeable reduction in the frequency
response.

In Table 4 impact of the thickness ratios and the porosity on the frequencies is displayed for three values of power
law indexes (1, 5, and 10) and three thickness ratios (0.05, 0.1, and 0.15). Considering the tabulated findings in Table
4, the increases in the thickness ratios cause the frequency values increase irrespective of the presence or absence of
porosity. In addition, it can be observed that the structure's stiffness reduces due to increasing the porosity, which
tends to a decline in the frequency, and the same effect happens by raising the power law indexes.

0.200 —
0175 | ===-=--p=0 | g, ]| = n= L
- e =01 nm 5 g
N Bl (R " u =0.2 nm a7
0.1504 nm //
0.150 p=03 S .
0.125
@ 0.1004
0.075
0.050-
0.025
0.06 0.08 0.10 012 0.14 0.06 0.08 0.10 0.12 0.14
(a) h (nm) (b) h (nm)

0251

0.06 0.08 0.10 012 0.14
© h (nm)
Fig. 3: Behavior of frequencies versus the thickness ratios for a PFG nanoplate (a) for some values of the porosity parameters. (b)
for some values of the nonlocal parameters. (c) for different length scale parameters

Figures 3(a—c) present the variations of the frequency with respect to the thickness ratios for different combinations
of porosity, nonlocal factor, and length-scale factor. The results clearly indicate that the frequency increases as the
thickness ratio becomes larger. In contrast, higher values of porosity and the nonlocal factor lead to lower frequency
values, while an increase in the length-scale factor produces a stiffening effect that enhances the vibrational frequency.
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Fig. 4: The variation of frequencies versus the nonlocal parameters for a PFG nanoplate (a) for some values of the length-scale
parameters. (b) for some values of the porosity parameters. (c) for some values of the thickness ratios. (d) for some values of the
power indices

Figures 4(a—d) illustrate the impacts of the nonlocal factor on the fundamental frequency for various values of the
length-scale factor, porosity coefficient, thickness ratios, and power law index, respectively. From these figures, it is
clear that increasing the non-local factor leads to a noticeable drop in the fundamental eigenfrequency for all
considered cases. In contrast, higher values of the length scale factor and the thickness ratio consistently result in
increased frequency levels, reflecting their stiffening influence on the system’s dynamic response. On the contrary,
the frequency reduces as the porosity rises. A significant decrement in the fundamental frequency when the power
indices.

Figures 5(a—d) present the variations of the nondimensional fundamental frequency of the porous FG nanoplate
concerning the length scale parameter for various values of the porosity coefficient, nonlocal factor, thickness ratios,
and the power indices, respectively. In all cases, the frequency curves exhibit a clear increasing trend as the length-
scale factor increases, which highlights the stiffening effect introduced by the strain-gradient contribution.

In addition, the influence of material gradation is evident, as higher power-law indices consistently lead to lower
frequency values due to the increased dominance of the metallic phase, which reduces the overall stiffness of the
structure. A similar softening behaviour is observed with increasing porosity levels, as illustrated in Figs. 5(a-b), where
higher porosity results in a noticeable decrease in the frequency response.
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Fig. 5: Behavior of frequencies versus the length-scale factor for a PFG nanoplate (a) for some values of the power indices. (b) for

some values of the porosity parameters. (c) for some values of the thickness ratios. (d) for some values of the nonlocal parameters

Conversely, Fig. 5(c) demonstrates that increasing the thickness ratio has a pronounced stiffening effect on the
plate, leading to a significant rise in the non-dimensional frequency. Finally, Fig. 5(d) highlights the role of
nonlocality, showing that stronger nonlocal effects reduce the fundamental frequency. This behaviour confirms that
nonlocal interactions introduce an additional softening mechanism, which counteracts the stiffening influence of the
length-scale factor and diminishes the overall dynamical responses of the system.

Figures 6(a-c) are plotted to display the frequency behaviour versus the porosity for different values of the power
indices, the nonlocal parameters, and the thickness ratios. It is concluded that frequencies motivate decreasing by a
rise in the porosities in general. Based on the diagram (Fig. 6a), frequencies gradually diminish as the power indices
increase. The influence of the nonlocality is investigated by plotting the variation of frequencies versus the porosity
in Fig. 6b. As mentioned before, frequencies of PFGP increase as thickness ratios rise, as shown in Fig. 6c.

5. Conclusions

This study provides an in-depth theoretical examination of the elastic vibration characteristics of PFG plates. The
governing formulation is established within the framework of linear elasticity by accounting for the stretching effect
through a hyperbolic shear deformation model, thereby evading the use of shear correction factors. The resulting
vibration eigenvalue problem of the PFGP is solved analytically using Navier’s solution approach, offering an efficient
and reliable means for evaluating the dynamic response of the structure.
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Fig. 6: The variation of frequencies versus the porosity parameters for a PFG nanoplate (a) for some values of power indices. (b)
for some values of the nonlocal parameters. (c) for some values of the thickness ratios

Comprehensive parametric revisions are approved to assess the impacts of key material and structural parameters,
including porosity coefficient, nonlocal parameter, material length-scale factor, thickness ratio, and power-law index,
on the non-dimensional fundamental frequency. The numerical results demonstrate that the vibrational characteristics
of PFGPs are strongly influenced by the combined effects of porosity distribution, nonlocal elasticity, strain-gradient
effects, and material gradation.

Comparisons with previously published results available in the literature show excellent agreement, confirming the
validity and reliability of the current formulation. The findings indicate that the rising value of the power indices
results in a reduction in the fundamental eigenfrequency, both in porous and non-porous configurations, due to the
increased contribution of the metal phase and the associated reduction in stiffness. In contrast, increasing the thickness
ratio enhances the structural rigidity, resulting in higher frequency values.

Moreover, the presence of porosity significantly degrades the stiffness and mechanical performance of the PFGP,
leading to lower vibration frequencies and increasing the susceptibility of the structure to damage, such as cracking
or fracture. These observations emphasize the importance of controlling porosity during the manufacturing process of
FG materials. Consequently, advanced fabrication techniques that limit porosity content are strongly recommended to
improve the structural integrity and dynamic performance of FGM-based components.

Overall, the present study delivers useful insights into the dynamic behaviour of PFG nanoplates and can serve as
a reliable reference for the design and optimization of advanced micro- and nano-scale structural elements.
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Appendix A

The stiffness terms (4;

The stress resultants N, M, S, and Q are defined by:

(N, Ny, Ny) = [ h/z(o 0y Ty )dz N, fh’fsz”(z)UZdz,
(MX,M Mxy) = h/2 z(ax,ay,'rxy)dz
(S, Sy, S y) = h/zF(z)(x ay,'[xy)dz

(sz' Qyz) = h/z F (x3)(sz' Tyz)dx

The moment of inertia is defined as:

1= [ |12 @%F@),2F @), (F@)' F'@), F @)*| p@)dz. i =1,...,8.

ijs BU, El]? Vl]a Fl]) Hl]) Dl]) Gl]a Kl]a Ml]a Ll]) are defined as:
h/2
(A11,A22,A12, Ase) = f_h/z(cn'czz'cu'css) dz,
R/2 o s s
(B11, Bz, By2, Bes) = f_h/z(cn'czz'cu'css) zdz,

R/2 pn o s 4
(E11,E22,E12,Ege) = f_h/z(cn'czz'cu'css) (2)*dz,
R

V11, Va2, Vi, Veo) = ffg(fn' €22, €12, Ce6) F(2)dz,

2
(Fi1,Fa2, F12, Fee) = f_hfijz(fn' C22, €12, Ce6) 2F (2)dz,
(Hy1,Hya,Hig) Hee) = f_hfijz(fn' €22, €12, Cg6) F?(2)dz,
(D31,D3;) = f_h,ifz(fﬂ» ¢32)F"(2) dz,
(G31,G32) = f_h;i/zz(fﬂ» C32)%3F"(2) dz,

/2

(K13, K23) = f_h/2(513» ¢23) F(2)F''(2) dz,
(M4, Mss) = f_h,i/zz(@;zp Css)[F'(2))? dz.
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