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Abstract 

This study investigates the free vibration behavior of porous functionally 

graded plates (PFGPs) within the context of nonlocal strain–gradient 

elasticity theory. Two different porosity distribution types are examined, and 

the thickness-wise variation of material properties is modeled by means of an 

enhanced power-law scheme. The kinematic description is formulated based 

on a refined higher-order shear deformation plate theory that inherently 

enforces zero transverse shear stresses at the plate surfaces, thus evading the 

usage of shear correction factors. The governing equations of motion for the 

nonlocal model are derived via Hamilton’s principle and explained 

analytically to get the natural frequencies of the PFGPs. A detailed parametric 

analysis is performed to assess the effects of the nonlocal parameter, internal 

material length scale, power-law exponent, wave number, and porosity 

parameters on the vibrational characteristics. The validity and effectiveness 

of the current preparation are confirmed through comparisons with existing 

results obtainable in the literature. 

Keywords: Functionally graded plate; porosity; nonlocal strain-stress gradient theory (NSGT); higher-

order normal and shear deformations theory 

1. Introduction 

Functionally graded materials (FGMs) have been developed to meet the growing demands of advanced engineering 

applications due to their superior mechanical and thermal characteristics, such as enhanced resistance to oxidation, 

corrosion, and high-temperature environments. These materials belong to a class of composite structures in which 

material constituents vary continuously through the thickness, resulting in a smooth transition of properties and 

reduced stress concentrations compared with conventional layered composites. 

Extensive research has been dedicated to the mechanical actions of FGM-based structures using high-order shear 

deformation theories, including bending, buckling, and vibration. Early contributions by Reddy and co-workers [1-3] 
employed third-order shear deformation theory to investigate the responses of isotropic and FG beams and plates. 

Subsequently, numerous refined shear deformation models were proposed to achieve more accurate representations 

of transverse shear effects through various shape functions, such as trigonometric, hyperbolic, exponential, 
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exponential–logarithmic, trigonometric–exponential, and polynomial forms [4-27]. 

During the fabrication of FGMs, imperfections such as porosity may arise, significantly influencing stiffness and 

overall mechanical performance and increasing susceptibility to damage. Consequently, incorporating porosity effects 

into structural modelling has become essential. Several studies have addressed this issue by examining the mechanical 

responses of porous FGM structures. El-shahrany [27] analyzed the normal and shear deformations of unidirectional 

and bi-directional porous FGM nano plate with three constituents, employing hyperbolic shear/normal deformations 

theory and Eringen’s nonlocal elasticity theory. Cuong-Le et al. [28] examined buckling and free vibration of porous 

FG annular plate and shell structures with graded porosity distributions. Slimane et al. [29] and Kenanda et al. [30] 

explored the impact of the porosity distributions and thickness stretching on the vibration behaviour of smart FG-

based plates. Additional works have employed high-order and quasi-3D theories to capture the coupled impacts of 

shear deformations, thickness stretching, and porosity on dynamic responses [31-33]. Moreover, Pham et al. [34] used 

the Rayleigh–Ritz method and Chebyshev polynomials to discuss the hygro-thermo-mechanical loading effect on 
behaviour of the porous functionally graded curved nano beam rested on an elastic foundation. 

 

 

Fig 1: A dimensional configuration of the proposed porous FG plate 

 

2. Theoretical nonlocal strain-stress gradient theory 

The stresses take into account the influences of nonlocal-elastic stresses besides strain gradient stresses according 

to the NSGT. Then, the stress field can be expressed as [33] 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
(0)
− ∇𝜎𝑖𝑗

(1)
, (1) 

in which the classical stresses 𝜎𝑖𝑗
(0)

 can be displayed as 

𝜎𝑖𝑗
(0)
= ∫ 𝑐̃𝑖𝑗𝑘𝑙𝛼0(𝒙, 𝒙

′, 𝑒0𝑎)𝜀𝑘𝑙
′ (𝒙′)d𝒙′

𝐿

0
, (2) 

and the high-order nonlocal stresses 𝜎𝑖𝑗
(1)

 can be expressed as 

𝜎𝑖𝑗
(1)
= 𝑙2 ∫ 𝑐̃𝑖𝑗𝑘𝑙𝛼1(𝒙, 𝒙

′, 𝑒1𝑎)𝜀𝑘𝑙,1
′ (𝒙′)d𝒙′

𝐿

0
, (3) 

where 𝑐̃𝑖𝑗𝑘𝑙 represents the elastic coefficient and 𝑒𝑖𝑎, 𝑖 = 0,1 are the nonlocality parameters. The parameter 𝑙 accounts 

for the strain gradient impacts. The following equation describes the constitutive relation of NSGT [32]: 

[1 − (𝑒0𝑎)
2∇2][1 − (𝑒1𝑎)

2∇2]𝜎𝑖𝑗 = 𝑐̃𝑖𝑗𝑘𝑙{[1 − (𝑒1𝑎)
2∇2]𝜀𝑘𝑙 − 𝑙

2[1 − (𝑒0𝑎)
2∇2]∇2𝜀𝑘𝑙}, (4) 

where ∇2= 𝜕𝑥
2 + 𝜕𝑦

2. Consider 𝑒0 = 𝑒1 = 𝑒 and 𝜇 = 𝑒𝑎, hence 

(1 − 𝜇2∇2)𝜎𝑖𝑗 = 𝑐̃𝑖𝑗𝑘𝑙(1 − 𝑙
2∇2)𝜀𝑘𝑙. (5) 

Furthermore, the constitutive relations in Eq. (5) can be simplified to the following cases: 

- By putting 𝑙 = 0 in Eq. (5), the constitutive model of the non-local elasticity theory [35] can be given as 

(1 − 𝜇2∇2)𝜎𝑖𝑗 = 𝑐̃𝑖𝑗𝑘𝑙𝜀𝑘𝑙. (6) 

- By putting 𝜇 = 0 in Eq. (5), the constitutive model of the strain gradient theory can be obtained as 
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𝜎𝑖𝑗 = 𝑐̃𝑖𝑗𝑘𝑙(1 − 𝑙
2∇2)𝜀𝑘𝑙. (7) 

3. PFG-based material properties 

A porous rectangular plate of FG material with a thickness ℎ, a length 𝑎, and a width 𝑏 containing the top ceramic 

surface and the bottom metal surface, as seen in Fig. 1. A following power-law function is employed to describe the 

porous FG plate properties, including mass density , the elastic modulus 𝐸 as 

𝜂(𝑥3) = 𝜂𝑚 + (𝜂𝑐 − 𝜂𝑚) (
𝑧

ℎ
+

1

2
)
𝑝

+ 𝜒, (8) 

where 𝑝 is the power law, respectively. Moreover, the term χ can be determined for a perfect FGM as χ = 0, for even 

distribution of porosity as χ = −
𝛽

2
(𝜂𝑐 + 𝜂𝑚) , 0 ≤ 𝛽 ≤ 1 , and for uneven distribution of porosity as χ =

−
𝛽

2
(𝜂𝑐 + 𝜂𝑚) (1−

2|𝑧|

ℎ
), where 𝛽 is the porosity constant. 

3.1. Problem formulation 

By considering the effect of the thickness extension, the displacements can be represented as 

𝑈1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑡) − 𝑧
∂𝑢3

𝜕𝑥
+ 𝐹(𝑧)𝜙1(𝑥, 𝑦, 𝑡), 

𝑈2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢2(𝑥, 𝑦, 𝑡) − 𝑧
∂𝑢3

𝜕𝑦
+ 𝐹(𝑧)𝜙2(𝑥, 𝑦, 𝑡), 

𝑈3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢3(𝑥, 𝑦, 𝑡) + 𝐹
′(𝑧)𝜙3(𝑥, 𝑦, 𝑡), 

𝐹(𝑧) = ℎ sinh(𝑧/ℎ) − (4𝑧3/3ℎ2) cosh(1/2), 

(9) 

where 𝑢1, 𝑢2, and 𝑢3 are the mid-plane displacement components and 𝜙𝑖, 𝑖 =1, 2, and 3 are the rotation components 

along the 𝑥, 𝑦, and 𝑧 directions. 

The linear strains of a porous system are defined as 

𝜀𝑥 =
∂𝑢1

𝜕𝑥
− 𝑧

𝜕2𝑢3

𝜕𝑥2
+ 𝐹(𝑧)

∂𝜙1

𝜕𝑥
,     𝜀𝑦 =

∂𝑢2

𝜕𝑦
− 𝑧

𝜕2𝑢3

𝜕𝑦2
+ 𝐹(𝑧)

∂𝜙2

𝜕𝑦
,     𝜀𝑧 = 𝐹

′′(𝑧)𝜙3, 

𝛾𝑦𝑧 = 𝐹
′(𝑧) (𝜙2 +

∂𝜙3

𝜕𝑦
),    𝛾𝑥𝑧 = 𝐹

′(𝑧) (𝜙1 +
∂𝜙3

𝜕𝑥
),    𝛾𝑥𝑦 =

∂𝑢1

𝜕𝑦
+

∂𝑢2

𝜕𝑥
− 2𝑧

𝜕2𝑢3

𝜕𝑥𝜕𝑦
+ 𝐹(𝑧) (

∂𝜙1

𝜕𝑦
+

∂𝜙2

𝜕𝑥
). 

(10) 

Hooke’s law describes the relationship between the stresses and the strains as 

(1 − 𝜇2∇2)𝜎̅ = 𝑐̃𝑖𝑗(1 − 𝑙
2∇2)𝜀,̅ (11) 

in which 

𝜎̅ = {𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜏𝑦𝑧 , 𝜏𝑥𝑧 , 𝜏𝑥𝑦}
𝑇
,    𝜀̅ = {𝜀𝑥 , 𝜀𝑦 , 𝜀𝑧 , 𝛾𝑦𝑧 , 𝛾𝑥𝑧 , 𝛾𝑥𝑦}

𝑇
,    𝑐̃𝑖𝑗 =

[
 
 
 
 
 
𝑐̃11
𝑐̃21
𝑐̃31
0
0
0

  

𝑐̃12
𝑐̃22
𝑐̃32
0
0
0

  

𝑐̃13
𝑐̃23
𝑐̃33
0
0
0

  

0
0
0
𝑐̃44
0
0

  

0
0
0
0
𝑐̃55
0

  

0
0
0
0
0
𝑐̃66]
 
 
 
 
 

. (12) 

The stiffness coefficients 𝑐̃𝑖𝑗  are given by:  

𝑐̃11 = 𝑐̃22 = 𝑐̃33 =
𝐸(𝑧)(1−ν)

(1−2ν)(1+ν)
,,    𝑐̃12 = 𝑐̃13 = 𝑐̃23 =

ν𝐸(𝑧)

(1−2ν)(1+ν)
,    𝑐̃44 = 𝑐̃55 = 𝑐̃66 = 𝐺(𝑧) =

𝐸(𝑧)

2(1+ν)
, (13) 

where 𝐸(𝑧), 𝜈, and 𝐺(𝑧) are Young’s modulus, Poisson’s ratio, and shear modulus of the porous system, respectively. 

3.2. Motion system 

Based on Hamilton's principle, the motion system can be given by the next variation form: 

∫ (𝛿𝐸𝑠 + 𝛿𝐸𝑝 − 𝛿𝐸𝑘)
𝑡

0
d𝑡 = 0, (14) 

𝛿𝐸𝑠 = ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜎𝑧𝛿𝜀𝑧 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦)
 

𝑉
d𝑉, (15) 
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𝛿𝐸𝑝 = −∫ 𝑞𝛿𝑤
 

𝐴
d𝐴, (16) 

𝛿𝐸𝑘 = ∫ (𝑈̇1𝛿𝑈̇1 + 𝑈̇2𝛿𝑈̇2 + 𝑈̇3𝛿𝑈̇3)𝜌(𝑧)
 

𝑉
d𝑉, (17) 

in which 𝛿𝐸𝑝, 𝛿𝐸𝑠 and 𝛿𝐸𝑘 calculate variations of the three energies: the potential energy of the applied loads, the 

strain energy, and the kinetic energy, respectively. 

By using Eqs. (15)-(17) into Eq. (14) and substituting Eqs. (11)-(13) in (14). The motion system is obtained as: 

𝛿𝑢1: (1 − 𝑙
2∇2)(

∂𝑁𝑥

𝜕𝑥
+

∂𝑁𝑥𝑦

𝜕𝑦
) = (1 − 𝜇2∇2)(𝑇1𝑢̈1 − 𝑇2

∂𝑢̈3

𝜕𝑥
+ 𝑇4𝜙̈1), 

𝛿𝑢2: (1 − 𝑙
2∇2)(

∂𝑁𝑥𝑦

𝜕𝑥
+

∂𝑁𝑦

𝜕𝑦
) = (1 − 𝜇2∇2)(𝑇1𝑢̈2 − 𝑇2

∂𝑢̈3

𝜕𝑦
+ 𝑇4𝜙̈2), 

𝛿𝑢3: (1 − 𝑙
2∇2)(

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
) = (1 − 𝜇2∇2)[𝑇1𝑢̈3 +𝑇2 (

∂𝑢̈1

𝜕𝑥
+

∂𝑢̈2

𝜕𝑦
)−𝑇3 (

𝜕2𝑢̈3

𝜕𝑥2
+

𝜕2𝑢̈3

𝜕𝑦2
) +

𝑇5 (
∂𝜙̈1

𝜕𝑥
+

∂𝜙̈2

𝜕𝑦
) + 𝑇7𝜙̈3], 

𝛿𝜙1: (1 − 𝑙
2∇2) (

∂𝑆𝑥

𝜕𝑥
+

∂𝑆𝑥𝑦

𝜕𝑦
−𝑄𝑥13) = (1 − 𝜇

2∇2)(𝑇4𝑢̈1 − 𝑇5
∂𝑢̈3

𝜕𝑥
+ 𝑇6𝜙̈1), 

𝛿𝜙2: (1 − 𝑙
2∇2) (

∂𝑆𝑥𝑦

𝜕𝑥
+

∂𝑆𝑦

𝜕𝑦
−𝑄𝑦𝑧) = (1 − 𝜇

2∇2)(𝑇4𝑢̈2 − 𝑇5
∂𝑢̈3

𝜕𝑦
+ 𝑇6𝜙̈2), 

𝛿𝜙3: (1 − 𝑙
2∇2) (

∂𝑄𝑥𝑧

𝜕𝑥
+

∂𝑄𝑦𝑧

𝜕𝑦
−𝑁𝑧) = (1 − 𝜇

2∇2)(𝑇7𝑢̈3 + 𝑇8𝜙̈3), 

(18) 

where 𝑁, 𝑀, 𝑆, and 𝑄 are the moment and the stress resultants, while 𝑇𝑖, 𝑖 = 1,… ,8 represent the moments of inertia, 

which are mentioned in Appendix A. The system (18) can be rewritten as: 

𝛿𝑢1: (1 − 𝑙
2∇2) {𝐴11

𝜕2𝑢1

𝜕𝑥2
− 𝐵11

𝜕3𝑢3

𝜕𝑥3
+𝑉11

𝜕2𝜙1

𝜕𝑥2
+𝐴12

𝜕2𝑢2

𝜕𝑥𝜕𝑦
−𝐵12

𝜕3𝑢3

𝜕𝑥𝜕𝑦2
+𝑉12

𝜕2𝜙2

𝜕𝑥𝜕𝑦
+  

𝐷13
∂𝜙3

𝜕𝑥
+ 𝐴66

𝜕2𝑢1

𝜕𝑦2
+𝐴66

𝜕2𝑢2

𝜕𝑥𝜕𝑦
− 2𝐵66

𝜕3𝑢3

𝜕𝑥𝜕𝑦2
+ 𝑉66 (

𝜕2𝜙1

𝜕𝑦2
+

𝜕2𝜙2

𝜕𝑥𝜕𝑦
)}  

= (1 − 𝜇2∇2)(𝑇1𝑢̈1 − 𝑇2
∂𝑢̈3

𝜕𝑥
+ 𝑇4𝜙̈1), 

(19) 

𝛿𝑢2: (1 − 𝑙
2∇2) {𝐴66

𝜕2𝑢1

𝜕𝑥𝜕𝑦
+𝐴66

𝜕2𝑢2

𝜕𝑥2
− 2𝐵66

𝜕3𝑢3

𝜕𝑥2𝜕𝑦
+ 𝑉66 (

𝜕2𝜙1

𝜕𝑥𝜕𝑦
+

𝜕2𝜙2

𝜕𝑥2
) + 𝐴21

𝜕2𝑢1

𝜕𝑥𝜕𝑦
−𝐵21

𝜕3𝑢3

𝜕𝑥2𝜕𝑥2
 

+𝑉21
𝜕2𝜙1

𝜕𝑥𝜕𝑦
+𝐴22

𝜕2𝑢2

𝜕𝑦2
−𝐵22

𝜕3𝑢3

𝜕𝑦3
+ 𝑉22

𝜕2𝜙2

𝜕𝑦2
+ 𝐷23

∂𝜙3

𝜕𝑦
} = (1 − 𝜇2∇2) (𝑇1𝑢̈2 − 𝑇2

∂𝑢̈3

𝜕𝑦
+ 𝑇4𝜙̈2), 

(20) 

𝛿𝑢3: (1 − 𝑙
2∇2) {𝐵11

𝜕3𝑢1

𝜕𝑥3
− 𝐸11

𝜕4𝑢3

𝜕𝑥4
+ 𝐹11

𝜕3𝜙1

𝜕𝑥3
+𝐵12

𝜕3𝑢2

𝜕𝑥2𝜕𝑦
− 𝐸12

𝜕4𝑢3

𝜕𝑥2𝜕𝑦2
+ 𝐹12

𝜕3𝜙2

𝜕𝑥2𝜕𝑦
+  

𝐺13
𝜕2𝜙3

𝜕𝑥2
+ 2𝐵66

𝜕3𝑢1

𝜕𝑥𝜕𝑦2
+ 2𝐵66

𝜕3𝑢2

𝜕𝑥2𝜕𝑦
− 4𝐸66

𝜕4𝑢3

𝜕𝑥2𝜕𝑦2
+ 2𝐹66 (

𝜕3𝜙1

𝜕𝑥𝜕𝑦2
+

𝜕3𝜙2

𝜕𝑥2𝜕𝑦
) + 𝐵21

𝜕3𝑢1

𝜕𝑥𝜕𝑦2
  

−𝐸21
𝜕4𝑢3

𝜕𝑥2𝜕𝑦2
+ 𝐹21

𝜕3𝜙1

𝜕𝑥𝜕𝑦2
+ 𝐵22

𝜕3𝑢2

𝜕𝑦3
−𝐸22

𝜕4𝑢3

𝜕𝑦4
+ 𝐹22

𝜕3𝜙2

𝜕𝑦3
+𝐺23

𝜕2𝜙3

𝜕𝑦2
}  

= (1 − 𝜇2∇2) [𝑇1𝑢̈3 + 𝑇2 (
∂𝑢̈1

𝜕𝑥
+

∂𝑢̈2

𝜕𝑦
) − 𝑇3 (

𝜕2𝑢̈3

𝜕𝑥2
+

𝜕2𝑢̈3

𝜕𝑦2
) + 𝑇5 (

∂𝜙̈1

𝜕𝑥
+

∂𝜙̈2

𝜕𝑦
) + 𝑇7𝜙̈3], 

(21) 

𝛿𝜙1: (1 − 𝑙
2∇2) {𝑉11

𝜕2𝑢1

𝜕𝑥2
− 𝐹11

𝜕3𝑢3

𝜕𝑥3
+𝐻11

𝜕2𝜙1

𝜕𝑥2
+𝑉12

𝜕2𝑢2

𝜕𝑥𝜕𝑦
− 𝐹12

𝜕3𝑢3

𝜕𝑥𝜕𝑦2
+𝐻12

𝜕2𝜙2

𝜕𝑥𝜕𝑦
+  

+𝐾13
∂𝜙3

𝜕𝑥
+ 𝑉66 (

𝜕2𝑢1

𝜕𝑦2
+

𝜕2𝑢2

𝜕𝑥𝜕𝑦
) − 2𝐹66

𝜕3𝑢3

𝜕𝑥𝜕𝑦2
+𝐻66 (

𝜕2𝜙1

𝜕𝑦2
+

𝜕2𝜙2

𝜕𝑥𝜕𝑦
) −𝑀55 (𝜙1 +

∂𝜙3

𝜕𝑥
)}  

= (1 − 𝜇2∇2)(𝑇4𝑢̈1 − 𝑇5
∂𝑢̈3

𝜕𝑥
+ 𝑇6𝜙̈1), 

(22) 

𝛿𝜙2: (1 − 𝑙
2∇2) {𝑉66 (

𝜕2𝑢1

𝜕𝑥𝜕𝑦
+

𝜕2𝑢2

𝜕𝑥2
) − 2𝐹66

𝜕3𝑢3

𝜕𝑥2𝜕𝑦
+ 𝐻66 (

𝜕2𝜙1

𝜕𝑥𝜕𝑦
+

𝜕2𝜙2

𝜕𝑦2
) + 𝑉21

𝜕2𝑢1

𝜕𝑥𝜕𝑦
− 𝐹21

𝜕3𝑢3

𝜕𝑥2𝜕𝑦
+  

𝐻21
𝜕2𝜙1

𝜕𝑥𝜕𝑦
+𝑉22

𝜕2𝑢2

𝜕𝑦2
− 𝐹22

𝜕3𝑢3

𝜕𝑦3
+𝐻22

𝜕2𝜙2

𝜕𝑦2
+ 𝐾23

∂𝜙3

𝜕𝑦
−𝑀44 (𝜙2 +

∂𝜙3

𝜕𝑦
)}  

= (1 − 𝜇2∇2)(𝑇4𝑢̈2 − 𝑇5
∂𝑢̈3

𝜕𝑦
+ 𝑇6𝜙̈2), 

(23) 
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𝛿𝜙3: (1 − 𝑙
2∇2) {𝑀55 (

∂𝜙1

𝜕𝑥
+

𝜕2𝜙3

𝜕𝑥2
) + 𝑀44 (

∂𝜙2

𝜕𝑦
+

𝜕2𝜙3

𝜕𝑦2
) − 𝐷31

∂𝑢1

𝜕𝑥
+ 𝐺31

𝜕2𝑢3

𝜕𝑥2
− 𝐾31

∂𝜙1

𝜕𝑥
  

−𝐷32
∂𝑢2

𝜕𝑦
+𝐺32

𝜕2𝑢3

𝜕𝑦2
−𝐾32

∂𝜙2

𝜕𝑦
− 𝐿33𝜙3} = (1 − 𝜇

2∇2)(𝑇7𝑢̈3 + 𝑇8𝜙̈3). 
(24) 

3.3. Analytical solution 

By employing the double Fourier series and Navier's approach, solutions of the equations system that describe the 

simply-supported PFG plate are expanded 

{
 
 

 
 
𝑢1
𝑢2
𝑢3
𝜙1
𝜙2
𝜙3}
 
 

 
 

= ∑ ∑

{
 
 

 
 
𝑈1𝑚𝑛 cos(𝜆1𝑥) sin(𝜆2𝑦)
𝑈2𝑚𝑛 sin(𝜆1𝑥) cos(𝜆2𝑦)
𝑈3𝑚𝑛 sin(𝜆1𝑥) sin(𝜆2𝑦)
𝛷1𝑚𝑛 cos(𝜆1𝑥) sin(𝜆2𝑦)
𝛷2𝑚𝑛 sin(𝜆1𝑥) cos(𝜆2𝑦)
𝛷3𝑚𝑛 sin(𝜆1𝑥) sin(𝜆2𝑦)}

 
 

 
 

e𝑖𝜔𝑚𝑛𝑡∞
𝑛=1

∞
𝑚=1 ,     𝜆1 = 𝑚𝜋/𝑎,    𝜆2 = 𝑛𝜋/𝑏. (25) 

The coefficients 𝑈1𝑚𝑛 , 𝑈2𝑚𝑛, 𝑈3𝑚𝑛, 𝛷1𝑚𝑛 , 𝛷2𝑚𝑛 , and 𝛷3𝑚𝑛  must be determined. The coefficient 𝜔𝑚𝑛  represents 

the frequency of (𝑚,𝑛) wavenumbers. Using Fourier's forms in Eq. (24) in Eqs. (19)-(23) to obtain 

([𝑆𝑖𝑗] − 𝜔
2[𝑃𝑖𝑗]){∆} = 0,    𝑖 = 1, … ,6,   {∆} = {𝑈1𝑚𝑛 , 𝑈2𝑚𝑛 , 𝑈3𝑚𝑛 , 𝛷1𝑚𝑛 , 𝛷2𝑚𝑛 , 𝛷3𝑚𝑛}

𝑇, 

𝑆11 = −[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)](𝐴11𝜆1

2 + 𝐴66𝜆2
2),   𝑆22 = −[1 + 𝑙

2(𝜆1
2 + 𝜆2

2)](𝐴66𝜆1
2 +𝐴22𝜆2

2), 

𝑆33 = −[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)][𝐸11𝜆1

4 + 𝜆1
2𝜆2

2(2𝐸12 + 4𝐸66) + 𝐸22𝜆2
4], 

𝑆44 = −[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)](𝑀55 +𝐻11𝜆1

2 +𝐻66𝜆2
2),   𝑆55 = −[1 + 𝑙

2(𝜆1
2 + 𝜆2

2)](𝑀44 +𝐻22𝜆2
2 +𝐻66𝜆1

2), 

𝑆66 = [1 + 𝑙
2(𝜆1

2+ 𝜆2
2)](𝐿33 −𝑀55𝜆1

2 −𝑀44𝜆2
2),   𝑆12 = −𝜆1𝜆2[1 + 𝑙

2(𝜆1
2 + 𝜆2

2)](𝐴12 + 𝐴66), 

𝑆13 = [1 + 𝑙
2(𝜆1

2 + 𝜆2
2)][𝐵11𝜆1

3+ 𝜆1𝜆2
2(𝐵12 + 2𝐵66)], 

𝑆14 = −[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)](𝑉11𝜆1

2 + 𝑉66𝜆2
2),   𝑆15 = −𝜆1𝜆2[1 + 𝑙

2(𝜆1
2 + 𝜆2

2)](𝑉12 +𝑉66), 

𝑆16 = 𝐷13𝜆1[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)],   𝑆23 = [1 + 𝑙

2(𝜆1
2+ 𝜆2

2)][𝐵22𝜆2
3 + 𝜆1

2𝜆2(𝐵21 + 2𝐵66)], 

𝑆24 = −𝜆1𝜆2[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)](𝑉21 +𝑉66),   𝑆25 = −[1+ 𝑙

2(𝜆1
2 + 𝜆2

2)](𝑉66𝜆1
2 +𝑉22𝜆2

2), 

𝑆26 = 𝐷23𝜆2[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)],   𝑆34 = [1 + 𝑙

2(𝜆1
2 + 𝜆2

2)][𝐹11𝜆1
3+ 𝜆1𝜆2

2(𝐹12 + 2𝐹66)], 

𝑆35 = [1 + 𝑙
2(𝜆1

2+ 𝜆2
2)][𝐹22𝜆2

3 + 𝜆1
2𝜆2(𝐹12 + 2𝐹66)],   𝑆36 = −[1 + 𝑙

2(𝜆1
2+ 𝜆2

2)](𝐺13𝜆1
2 + 𝐺23𝜆2

2), 

𝑆45 = −𝜆1𝜆2[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)](𝐻12+ 𝐻66),   𝑆46 = 𝜆1[1 + 𝑙

2(𝜆1
2 + 𝜆2

2)](𝐾13 −𝑀55), 

𝑆56 = 𝜆2[1 + 𝑙
2(𝜆1

2 + 𝜆2
2)](𝐾23 −𝑀44),   𝑃11 = 𝑃22 = [1 + 𝜇

2(𝜆1
2 + 𝜆2

2)]𝐾1, 

𝑃13 = 𝑃31 = −𝜆1𝐾2[1 + 𝜇
2(𝜆1

2 + 𝜆2
2)],   𝑃14 = 𝑃25 = [1 + 𝜇

2(𝜆1
2+ 𝜆2

2)]𝐾4, 

𝑃23 = 𝑃32 = −𝜆2𝐾2[1 + 𝜇
2(𝜆1

2 + 𝜆2
2)],   𝑃33 = [1 + 𝜇

2(𝜆1
2 + 𝜆2

2)][𝐾1 +𝐾3(𝜆1
2 + 𝜆2

2)], 

𝑃34 = −𝜆1[1 + 𝜇
2(𝜆1

2+ 𝜆2
2)]𝐾5,   𝑃35 = −[1 + 𝜇

2(𝜆1
2 + 𝜆2

2)]𝜆2𝐾5,   𝑃41 = 𝑃52 = [1 + 𝜇
2(𝜆1

2 + 𝜆2
2)]𝐾4, 

𝑃43 = −[1+ 𝜇
2(𝜆1

2 + 𝜆2
2)]𝜆1𝐾5,   𝑃44 = 𝑃55 = [1 + 𝜇

2(𝜆1
2 + 𝜆2

2)]𝐾6, 

𝑃53 = −[1 + 𝜇
2(𝜆1

2 + 𝜆2
2)]𝜆2𝐾5,   𝑃36 = 𝑃63 = [1 + 𝜇

2(𝜆1
2 + 𝜆2

2)]𝐾7, 

𝑃66 = [1 + 𝜇
2(𝜆1

2 + 𝜆2
2)]𝐾8,   (𝑃12 , 𝑃21, 𝑃15, 𝑃51, 𝑃16, 𝑃61) = 0, 

(𝑃24, 𝑃26, 𝑃45, 𝑃46 , 𝑃56, 𝑃65, 𝑃62 , 𝑃64) = 0. 

(26) 

The eigenvalue system in Eq. (25) is solved to determine the eigenfrequency values. 

4. Discussions and numerical results 

The accuracy and competence of the used theory (see Table 1) are observed in comparison with other analyses in 

the literature in this section. The certain parameters influences are investigated, such as the porosity, the geometric 

properties, and the power-law index. The non-dimensional parameters and the material properties are defined as 

follows: 

• Non-dimensional parameters: 

𝜔̂ = 𝜔ℎ√
𝜌𝑐

𝐸𝑐
,    𝜔̅ = 𝜔ℎ√

𝜌𝑚

𝐸𝑚
. 
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• Boundary conditions:  

𝑢2 = 𝑢3 = 𝜙2 = 𝜙3 = 𝑁𝑥 = 𝑁𝑧 = 𝑀𝑥 = 𝑆𝑥 = 𝑄𝑦𝑧 = 0  at  𝑥 = 0, 

𝑢1 = 𝑢3 = 𝜙1 = 𝜙3 = 𝑁𝑦 = 𝑁𝑧 = 𝑀𝑦 = 𝑆𝑦 = 𝑄𝑥𝑧 = 0  at  𝑦 = 0. 

• Material properties and geometry parameters:  

▪ The properties of Aluminum (Al): 𝐸𝑚 = 70 GPa,   𝜌𝑚 = 2702 kg/m3,   𝜈𝑚 = 0.3. 
▪ The properties of Alumina (Al2O3): 𝐸𝑐 = 380 GPa,   𝜌𝑐 = 3800 kg/m

3,   𝜈𝑐 = 0.3. 
▪ 𝑝 = 1, 𝜇 = 𝑙 = 0.1 nm, 𝑎/ℎ = 10, 𝑎/𝑏 = 1, 𝛽 = 0.1. 

To confirm the accuracy of the current formulation in predicting the dynamic response, a numerical sample is 

offered for the natural frequencies 𝜔̂ of an Al/Al2O3 FG plate with 𝑎/ℎ = 10, as listed in Table 1. This example is 

used to examine the impacts of the power-law index. The outcomes gained from the proposed quasi-3D theory show 

excellent agreement with those stated by Hosseini-Hashemi et al. [31] based on the first-order shear deformation 

theory, El-Shahrany [33] using high-order shear/normal deformation theory, and Kenanda [30] employing a hyperbolic 

high-order shear deformation model. Furthermore, when the stretching effect is neglected, the present predictions 

closely coincide with the published data. It is also detected that the natural frequency decreases as power law indexes 

increase, which can be attributed to the decrease in stiffness of the FG plate caused by the higher metal content, since 

the metal phase has a lower Young’s modulus and material density than the ceramic phase. 

The fundamental frequencies of a PFGP for simply-supported conditions versus the nonlocality, the porosity 

coefficient, and the power law indexes are displaced in Table 2, in the absence of the strain gradient impact. As it 

seems, the vibrational frequency decreases by increasing the power-law parameter. On the other hand, increasing the 

porosity is always accompanied by a decrease in the frequency of vibration. Moreover, one can observe that the natural 

frequencies of PFGP also reduce with increasing the nonlocal parameter. 

 

Table 1: Comparison of frequencies (𝝎̂) of an FG plate for three values of power law indexes and various wave numbers. 

𝑚  𝑛  Theory 𝜀𝑥3  
𝑝 

1 4 10 

1 1 FSDT [37] = 0 0.0442 0.0382 0.0366 

HSDT [33] ≠ 0 0.0448 0.0388 0.0367 

HHSDT [40] ≠ 0 0.0450 0.0390 0.0369 

Present ≠ 0 0.0450 0.0390 0.0369 

1 2 FSDT [37] = 0 0.1059 0.0911 0.0867 

HHSDT [40] ≠ 0 0.1079 0.0925 0.0869 

Present ≠ 0 0.1081 0.0925 0.0870 

 

Table 2: The frequencies (𝝎̂) of a PFG plate for three power law indexes and various values of the porosity and nonlocal parameters (𝒍 =
𝟎). 

𝜇 nm  𝛽  
𝑝 

1 5 10 

0.1 0 0.0411 0.0352 0.0337 

0.1 0.0404 0.0328 0.0313 

0.2 0.0393 0.0285 0.0270 

0.3 0.0376 0.0165 0.0128 

0.3 0 0.0270 0.0231 0.0221 

0.1 0.0265 0.0215 0.0206 

0.2 0.0258 0.0187 0.0177 

0.3 0.0247 0.0108 0.0084 

0.5 0 0.0185 0.0158 0.0151 

0.1 0.0181 0.0147 0.0141 

0.2 0.0176 0.0128 0.0121 

0.3 0.0169 0.0074 0.0058 

 

Table 3 reports the fundamental frequencies of the PFG nanoplate with simply supported boundary conditions as 

functions of the length-scale factor, porosity coefficient, and power-law index, while accounting for nonlocal effects. 

The influence of the strain gradient theory is clearly reflected through variation of the length-scale factor 𝑙, where an 

increase in 𝑙 consistently results in higher non-dimensional frequencies for all considered power-law indices. In 
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contrast, increasing either the porosity level or the power law indexes tend to a drop in the fundamental frequencies, 

indicating a softening of the structural response. 

Table 3: The frequencies (𝝎̂) of a PFG plate for three power law indexes and various values of the porosity and length-scale parameters 

(𝝁 = 𝟎. 𝟏 𝐧𝐦). 

𝑙 nm 𝛽 
𝑝 

1 5 10 

0.1  0 0.0450 0.0385 0.0369 

0.1 0.0442 0.0359 0.0343 

0.2 0.0430 0.0311 0.0295 

0.3 0.0411 0.0180 0.0140 

0.3 0 0.0685 0.0586 0.0562 

0.1 0.0672 0.0547 0.0522 

0.2 0.0654 0.0474 0.0450 

0.3 0.0626 0.0274 0.0214 

0.5 0 0.1001 0.0857 0.0822 

0.1 0.0983 0.0799 0.0763 

0.2 0.0956 0.0693 0.0658 

0.3 0.0915 0.0401 0.0312 

 

 
Fig. 2: Variation of frequencies versus the porosity parameters for a PFG nanoplate for different 

length scale parameters 

Table 4: The nondimensional frequencies (𝝎̅) of a PFG nanoplate for some of the power law indexes and three values of the porosity and 

thickness ratios ( 𝝁 = 𝟎. 𝟏 𝐧𝐦). 

ℎ/𝑎 𝛽 
𝑝 

1 5 10 

0.05 0 0.0226 0.0195 0.0187 

0.1 0.0221 0.0182 0.0174 

0.2 0.0215 0.0158 0.0151 

0.3 0.0206 0.0090 0.0071 

0.1 0 0.0884 0.0757 0.0725 

0.1 0.0868 0.0705 0.0674 

0.2 0.0844 0.0612 0.0581 

0.3 0.0807 0.0354 0.0276 

0.15 0 0.1924 0.1625 0.1553 

0.1 0.1890 0.1514 0.1438 

0.2 0.1840 0.1314 0.1232 

0.3 0.1762 0.0770 0.0591 
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Figure 2 illustrates the dependency of the vibration frequency of the PFGP on the porosity coefficient for different 

values of the length-scale factor. The fundamental frequency increases monotonically with the length scale factor, 

regardless of the porosity level. Conversely, increasing the porosity results in a noticeable reduction in the frequency 

response.  

In Table 4 impact of the thickness ratios and the porosity on the frequencies is displayed for three values of power 

law indexes (1, 5, and 10) and three thickness ratios (0.05, 0.1, and 0.15). Considering the tabulated findings in Table 

4, the increases in the thickness ratios cause the frequency values increase irrespective of the presence or absence of 

porosity. In addition, it can be observed that the structure's stiffness reduces due to increasing the porosity, which 

tends to a decline in the frequency, and the same effect happens by raising the power law indexes.  

 

  

 
Fig. 3: Behavior of frequencies versus the thickness ratios for a PFG nanoplate (a) for some values of the porosity parameters. (b) 

for some values of the nonlocal parameters. (c) for different length scale parameters 

Figures 3(a–c) present the variations of the frequency with respect to the thickness ratios for different combinations 

of porosity, nonlocal factor, and length-scale factor. The results clearly indicate that the frequency increases as the 

thickness ratio becomes larger. In contrast, higher values of porosity and the nonlocal factor lead to lower frequency 

values, while an increase in the length-scale factor produces a stiffening effect that enhances the vibrational frequency. 
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Fig. 4: The variation of frequencies versus the nonlocal parameters for a PFG nanoplate (a) for some values of the length-scale 

parameters. (b) for some values of the porosity parameters. (c) for some values of the thickness ratios. (d) for some values of the 

power indices 

Figures 4(a–d) illustrate the impacts of the nonlocal factor on the fundamental frequency for various values of the 

length-scale factor, porosity coefficient, thickness ratios, and power law index, respectively. From these figures, it is 

clear that increasing the non-local factor leads to a noticeable drop in the fundamental eigenfrequency for all 

considered cases. In contrast, higher values of the length scale factor and the thickness ratio consistently result in 

increased frequency levels, reflecting their stiffening influence on the system’s dynamic response. On the contrary, 

the frequency reduces as the porosity rises. A significant decrement in the fundamental frequency when the power 

indices. 

Figures 5(a–d) present the variations of the nondimensional fundamental frequency of the porous FG nanoplate 

concerning the length scale parameter for various values of the porosity coefficient, nonlocal factor, thickness ratios, 

and the power indices, respectively. In all cases, the frequency curves exhibit a clear increasing trend as the length-

scale factor increases, which highlights the stiffening effect introduced by the strain-gradient contribution . 

In addition, the influence of material gradation is evident, as higher power-law indices consistently lead to lower 

frequency values due to the increased dominance of the metallic phase, which reduces the overall stiffness of the 

structure. A similar softening behaviour is observed with increasing porosity levels, as illustrated in Figs. 5(a-b), where 

higher porosity results in a noticeable decrease in the frequency response . 
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Fig. 5: Behavior of frequencies versus the length-scale factor for a PFG nanoplate (a) for some values of the power indices. (b) for 

some values of the porosity parameters. (c) for some values of the thickness ratios. (d) for some values of the nonlocal parameters 

 

Conversely, Fig. 5(c) demonstrates that increasing the thickness ratio has a pronounced stiffening effect on the 

plate, leading to a significant rise in the non-dimensional frequency. Finally, Fig. 5(d) highlights the role of 

nonlocality, showing that stronger nonlocal effects reduce the fundamental frequency. This behaviour confirms that 

nonlocal interactions introduce an additional softening mechanism, which counteracts the stiffening influence of the 

length-scale factor and diminishes the overall dynamical responses of the system. 

Figures 6(a-c) are plotted to display the frequency behaviour versus the porosity for different values of the power 

indices, the nonlocal parameters, and the thickness ratios. It is concluded that frequencies motivate decreasing by a 

rise in the porosities in general. Based on the diagram (Fig. 6a), frequencies gradually diminish as the power indices 

increase. The influence of the nonlocality is investigated by plotting the variation of frequencies versus the porosity 

in Fig. 6b. As mentioned before, frequencies of PFGP increase as thickness ratios rise, as shown in Fig. 6c. 

5. Conclusions 

This study provides an in-depth theoretical examination of the elastic vibration characteristics of PFG plates. The 

governing formulation is established within the framework of linear elasticity by accounting for the stretching effect 

through a hyperbolic shear deformation model, thereby evading the use of shear correction factors. The resulting 

vibration eigenvalue problem of the PFGP is solved analytically using Navier’s solution approach, offering an efficient 

and reliable means for evaluating the dynamic response of the structure. 
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Fig. 6: The variation of frequencies versus the porosity parameters for a PFG nanoplate (a) for some values of power indices. (b) 

for some values of the nonlocal parameters. (c) for some values of the thickness ratios 

 

Comprehensive parametric revisions are approved to assess the impacts of key material and structural parameters, 

including porosity coefficient, nonlocal parameter, material length-scale factor, thickness ratio, and power-law index, 

on the non-dimensional fundamental frequency. The numerical results demonstrate that the vibrational characteristics 

of PFGPs are strongly influenced by the combined effects of porosity distribution, nonlocal elasticity, strain-gradient 

effects, and material gradation. 

Comparisons with previously published results available in the literature show excellent agreement, confirming the 

validity and reliability of the current formulation. The findings indicate that the rising value of the power indices 

results in a reduction in the fundamental eigenfrequency, both in porous and non-porous configurations, due to the 

increased contribution of the metal phase and the associated reduction in stiffness. In contrast, increasing the thickness 

ratio enhances the structural rigidity, resulting in higher frequency values. 

Moreover, the presence of porosity significantly degrades the stiffness and mechanical performance of the PFGP, 

leading to lower vibration frequencies and increasing the susceptibility of the structure to damage, such as cracking 

or fracture. These observations emphasize the importance of controlling porosity during the manufacturing process of 

FG materials. Consequently, advanced fabrication techniques that limit porosity content are strongly recommended to 

improve the structural integrity and dynamic performance of FGM-based components. 

Overall, the present study delivers useful insights into the dynamic behaviour of PFG nanoplates and can serve as 

a reliable reference for the design and optimization of advanced micro- and nano-scale structural elements. 



Journal of Computational Applied Mechanics 2026, 57(2): 348-361 359 

Appendix A 

• The stress resultants 𝑁, 𝑀, 𝑆, and 𝑄 are defined by: 

(𝑁𝑥 ,𝑁𝑦 ,𝑁𝑥𝑦) =  ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)d𝑧
ℎ/2

−ℎ/2
,   𝑁𝑧 = ∫ 𝐹′′(𝑧)𝜎𝑧d𝑧

ℎ/2

−ℎ/2
, 

(𝑀𝑥,𝑀𝑦 ,𝑀𝑥𝑦) =  ∫ 𝑧(𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)d𝑧
ℎ/2

−ℎ/2
, 

(𝑆𝑥 , 𝑆𝑦 , 𝑆𝑥𝑦) =  ∫ 𝐹(𝑧)(𝑥, 𝜎𝑦 , 𝜏𝑥𝑦)d𝑧
ℎ/2

−ℎ/2
, 

(𝑄𝑥𝑧 , 𝑄𝑦𝑧) = ∫ 𝐹′(𝑥3)(𝜏𝑥𝑧 , 𝜏𝑦𝑧)d𝑥
ℎ/2

−ℎ/2
. 

• The moment of inertia is defined as: 

𝑇𝑖 = ∫ [ 1, 𝑧, (𝑧)2, 𝐹(𝑧), 𝑧𝐹(𝑧), (𝐹(𝑧))
2
, 𝐹′(𝑧), (𝐹′(𝑧))2] 𝜌(𝑧)d𝑧

ℎ/2

−ℎ/2
, 𝑖 = 1, … , 8. 

• The stiffness terms (𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐸𝑖𝑗, 𝑉𝑖𝑗 , 𝐹𝑖𝑗 , 𝐻𝑖𝑗, 𝐷𝑖𝑗, 𝐺𝑖𝑗 , 𝐾𝑖𝑗, 𝑀𝑖𝑗, 𝐿𝑖𝑗) are defined as: 

(𝐴11, 𝐴22, 𝐴12, 𝐴66) = ∫ (𝑐̃11, 𝑐̃22, 𝑐̃12, 𝑐̃66)
ℎ/2

−ℎ/2
d𝑧, 

(𝐵11, 𝐵22 , 𝐵12, 𝐵66) = ∫ (𝑐̃11, 𝑐̃22, 𝑐̃12, 𝑐̃66)
ℎ/2

−ℎ/2
𝑧d𝑧, 

(𝐸11, 𝐸22, 𝐸12, 𝐸66) = ∫ (𝑐̃11, 𝑐̃22, 𝑐̃12, 𝑐̃66)
ℎ/2

−ℎ/2
(𝑧)2d𝑧, 

(𝑉11, 𝑉22, 𝑉12, 𝑉66) = ∫ (𝑐̃11, 𝑐̃22, 𝑐̃12, 𝑐̃66)
ℎ

2

−
ℎ

2

𝐹(𝑧)d𝑧, 

(𝐹11, 𝐹22, 𝐹12, 𝐹66) = ∫ (𝑐̃11, 𝑐̃22, 𝑐̃12, 𝑐̃66)
ℎ/2

−ℎ/2
𝑧𝐹(𝑧)d𝑧, 

(𝐻11,𝐻22,𝐻12,𝐻66) = ∫ (𝑐̃11, 𝑐̃22, 𝑐̃12, 𝑐̃66)
ℎ/2

−ℎ/2
𝐹2(𝑧)d𝑧, 

(𝐷31, 𝐷32) = ∫ (𝑐̃31, 𝑐̃32)𝐹′′(𝑧)
ℎ/2

−ℎ/2
d𝑧, 

(𝐺31 , 𝐺32) = ∫ (𝑐̃31, 𝑐̃32)𝑥3𝐹′′(𝑧)
ℎ/2

−ℎ/2
d𝑧, 

(𝐾13, 𝐾23) = ∫ (𝑐̃13, 𝑐̃23) 𝐹(𝑧)𝐹′′(𝑧)
ℎ/2

−ℎ/2
d𝑧, 

(𝑀44,𝑀55) = ∫ (𝑐̃44, 𝑐̃55)[𝐹′(𝑧)]
2ℎ/2

−ℎ/2
d𝑧. 
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