Modal Analysis of an Additively Manufacturing Scaled Wind Turbine Blade

Document Type : Research Paper

Authors

1 Mechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq

2 Mechanical Engineering Department, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

3 School of Engineering and Technology, Sharda University, Greater Noida, 201310, India

Abstract

The efficiency and reliability work best in renewable energy systems highly dependent on the wellness of the designing of wind turbine blade. Additive manufacturing, namely 3D printing, opens new possibilities for manufacturing scaled models with complex geometries and advanced materials. This paper brings a significant study on the modal and fatigue life analysis of a wind turbine blade using ANSYS software which is 3D printed with the scale of 1:3.75, and further validated in the experimental view. Fabricated out of 0-degree-oriented carbon-fiber-reinforced PLA, the blade is extensively studied for structural integrity and vibrational response. Geometric and dynamic scaling laws are applied to ensure an accurate representation of full-scale blade behavior in scaled models. Modal analysis in ANSYS Workbench elucidates mode shapes and frequencies, while fatigue life analysis assesses structural durability under realistic loading conditions. Experimental testing employs precision instrumentation, validates numerical predictions, and confirms enhancements in structural integrity achieved through design modifications. The findings underscore the efficacy of additive manufacturing and iterative design optimization in advancing wind energy infrastructure, exemplifying a symbiotic fusion of computational modelling and experimental validation.

Keywords

Main Subjects

[1]          H. Jokar, M. Mahzoon, R. Vatankhah, Dynamic modeling and free vibration analysis of horizontal axis wind turbine blades in the flap-wise direction, Renewable energy, Vol. 146, pp. 1818-1832, 2020.
[2]          C. Kong, H. Kim, J. Kim, A study on structural and aerodynamic design of composite blade for large scale HAWT system, Final report, Hankuk Fiber Ltd, 2000.
[3]          D. Le Gourieres, 2014, Wind power plants: theory and design, Elsevier,
[4]          R. M. Mayer, Design of composite structures against fatigue: applications to wind turbine blades, (No Title), 1996.
[5]          S. A. Khan, H. A. Khan, A. Khan, S. Salamat, S. S. Javaid, R. M. A. Khan, Investigation of the mechanical behavior of FDM processed CFRP/Al hybrid joint at elevated temperatures, Thin-Walled Structures, Vol. 192, pp. 111135, 2023.
[6]          F. Emami, M. Z. Kabir, Performance of composite metal deck slabs under impact loading, in Proceeding of, Elsevier, pp. 476-489.
[7]          A. A. F. Ogaili, A. A. Jaber, M. N. Hamzah, Wind turbine blades fault diagnosis based on vibration dataset analysis, Data in Brief, Vol. 49, pp. 109414, 2023.
[8]          A. Olabi, K. Obaideen, M. A. Abdelkareem, M. N. AlMallahi, N. Shehata, A. H. Alami, A. Mdallal, A. A. M. Hassan, E. T. Sayed, Wind energy contribution to the sustainable development goals: case study on London array, Sustainability, Vol. 15, No. 5, pp. 4641, 2023.
[9]          S. A. Khan, H. Liaqat, F. Akram, H. A. Khan, Development of a design space for dissimilar materials joining in aerospace applications, The Aeronautical Journal, Vol. 128, No. 1324, pp. 1284-1301, 2024.
[10]        M. Nazim, H. A. Khan, S. A. Khan, H. Liaqat, K. Rehman, Design, Development, and Performance Evaluation of FDM-Based Fastening Techniques for Single-Lap Joints, JOM, Vol. 76, No. 2, pp. 930-940, 2024.
[11]        F. Emami, A. J. Gross, Mechanical Properties of Hierarchical Beams for Large-Scale Space Structures, in Proceeding of, 0384.
[12]        T. Faber, M. Klose, Experiences with certification of offshore wind farms, in Proceeding of, ISOPE, pp. ISOPE-I-06-352.
[13]        C. Stork, C. Butterfield, W. Holley, P. H. Madsen, P. H. Jensen, Wind conditions for wind turbine design proposals for revision of the IEC 1400-1 standard, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 74, pp. 443-454, 1998.
[14]        D.-P. Molenaar, S. Dijkstra, Modeling the structural dynamics of flexible wind turbines, in Proceeding of, Routledge, pp. 234-237.
[15]        M. Lillico, R. Butler, Finite element and dynamic stiffness methods compared for modal analysis of composite wings, AIAA journal, Vol. 36, No. 11, pp. 2148-2151, 1998.
[16]        S. Poole, R. Phillips, Rapid prototyping of small wind turbine blades using additive manufacturing, in Proceeding of, IEEE, pp. 189-194.
[17]        M. S. Davis, M. R. Madani, 3D-printing of a functional small-scale wind turbine, in Proceeding of, IEEE, pp. 1-6.
[18]        M. Rouway, M. Tarfaoui, N. Chakhchaoui, L. E. H. Omari, F. Fraija, O. Cherkaoui, Additive manufacturing and composite materials for marine energy: case of tidal turbine, 3D Printing and Additive Manufacturing, Vol. 10, No. 6, pp. 1309-1319, 2023.
[19]        H. A. Porto, C. A. Fortulan, A. J. V. Porto, R. H. Tsunaki, Geometric Analysis of Small Wind Turbine Blades Manufactured by Additive Manufacturing, Journal of Aerospace Technology and Management, Vol. 14, pp. e1022, 2022.
[20]        U. Singh, M. Lohumi, H. Kumar, Additive manufacturing in wind energy systems: A review, in Proceeding of, Springer, pp. 757-766.
[21]        P. Murdy, J. Dolson, D. Miller, S. Hughes, R. Beach, Leveraging the advantages of additive manufacturing to produce advanced hybrid composite structures for marine energy systems, Applied Sciences, Vol. 11, No. 3, pp. 1336, 2021.
[22]        S. Sivamani, M. Nadarajan, R. Kameshwaran, C. D. Bhatt, M. T. Premkumar, V. Hariram, Analysis of cross axis wind turbine blades designed and manufactured by FDM based additive manufacturing, Materials Today: Proceedings, Vol. 33, pp. 3504-3509, 2020.
[23]        A.-P. Chiriță, P.-P. Bere, R. I. RĂDOI, L. Dumitrescu, Aspects regarding the use of 3D printing technology and composite materials for testing and manufacturing vertical axis wind turbines, Mater. Plast, Vol. 56, No. 4, 2019.
[24]        K. Bassett, R. Carriveau, D.-K. Ting, 3D printed wind turbines part 1: Design considerations and rapid manufacture potential, Sustainable Energy Technologies and Assessments, Vol. 11, pp. 186-193, 2015.
[25]        C. Zhu, T. Li, M. M. Mohideen, P. Hu, R. Gupta, S. Ramakrishna, Y. Liu, Realization of circular economy of 3D printed plastics: A review, Polymers, Vol. 13, No. 5, pp. 744, 2021.
[26]        M. Dinar, D. W. Rosen, A design for additive manufacturing ontology, Journal of Computing and Information Science in Engineering, Vol. 17, No. 2, pp. 021013, 2017.
[27]        H. Schappo, L. Piaia, D. Hotza, G. V. Salmoria, Selective Laser Sintering of Biomaterials and Composites State of the Art and Perspectives, in Proceeding of, Trans Tech Publ, pp. 278-283.
[28]        T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, Vol. 143, pp. 172-196, 2018.
[29]        P. Dudek, FDM 3D printing technology in manufacturing composite elements, Archives of metallurgy and materials, Vol. 58, No. 4, pp. 1415--1418, 2013.
[30]        Y. Zhai, D. A. Lados, J. L. LaGoy, Additive manufacturing: making imagination the major limitation, Jom, Vol. 66, pp. 808-816, 2014.
[31]        S. C. Daminabo, S. Goel, S. A. Grammatikos, H. Y. Nezhad, V. K. Thakur, Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems, Materials today chemistry, Vol. 16, pp. 100248, 2020.
[32]        J.-Y. Lee, J. An, C. K. Chua, Fundamentals and applications of 3D printing for novel materials, Applied materials today, Vol. 7, pp. 120-133, 2017.
[33]        A. K. Zarzoor, A. A. Shandookh, A. A. Jaber, Analysis of 5 MW NREL Wind Turbine Using Qblade Software, in Proceeding of, IEEE, pp. 1-7.
[34]        H. Canet, P. Bortolotti, C. L. Bottasso, On the scaling of wind turbine rotors, Wind Energ. Sci. Discuss., https://doi. org/10.5194/wes-2020-66, in review, 2020.
[35]        H. Petersen, The scaling laws applied to wind turbine design, Wind Engineering, pp. 99-108, 1984.
[36]        N. Sergiienko, L. Da Silva, E. Bachynski-Polić, B. Cazzolato, M. Arjomandi, B. Ding, Review of scaling laws applied to floating offshore wind turbines, Renewable and Sustainable Energy Reviews, Vol. 162, pp. 112477, 2022.
[37]        F. Emami, M. Z. Kabir, Strength prediction of composite metal deck slabs under free drop weight impact loading using numerical approach and data set machine learning, Scientia Iranica, 2023.
[38]        N. H. Baharin, R. A. Rahman, Effect of accelerometer mass on thin plate vibration, Jurnal Mekanikal, 2009.
Volume 55, Issue 4
October 2024
Pages 683-697
  • Receive Date: 22 May 2024
  • Revise Date: 07 June 2024
  • Accept Date: 12 June 2024