Elastic moduli for a rectangular fibers array arrangement in a two phases composite

Document Type : Research Paper

Authors

1 Department Machine Tools, Technical University of Munich, 85748 Munich, Germany

2 Department of Mechanical Engineering, Transilvania University of Brasov, 500036 Brasov, Romania

3 Romanian Academy of Technical Sciences, B-dul Dacia 26, 030167 Bucharest, Romania

4 Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania

5 Academy of Romanian Scientists, Ilfov Street, 3, 050045 Bucharest, Romania

Abstract

Determining the elastic constants for composites with fibers is a continuous concern of researchers, being studied and analyzed different types of materials, with different topologies and geometries. In the work, these constants are determined for a composite reinforced with cylindrical fibers with a rectangular packing. The obtained results are applied for the calculation of these constants for a composite used in engineering applications.

Keywords

Main Subjects

[1]          H. Brinson, D. Morris, Y. Yeow, A new experimental method for the accelerated characterization of composite materials, 1978.
[2]          X. Jinsheng, W. Hongli, Y. Xiaohong, H. Long, Z. Changsheng, Application of TTSP to non-linear deformation in composite propellant, Emerging Materials Research, Vol. 7, No. 1, pp. 19-24, 2018.
[3]          B. G. Schaffer, D. F. Adams, Nonlinear viscoelastic behavior of a composite material using a finite element micromechanical analysis[Interim Report], 1980.
[4]          R. Schapery, Nonlinear viscoelastic solids, International journal of solids and structures, Vol. 37, No. 1-2, pp. 359-366, 2000.
[5]          Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, Vol. 11, No. 2, pp. 127-140, 1963/03/01/, 1963.
[6]          S. Vlase, R. Purcarea, H. Teodorescu-Draghicescu, M. Calin, I. Szava, M. Mihalcica, Behavior of a new Heliopol/Stratimat300 composite laminate, Optoelectronics and Advanced Materials-Rapid Communications, Vol. 7, No. 7-8, pp. 569-572, 2013.
[7]          R. Hinterhoelzl, R. Schapery, FEM implementation of a three-dimensional viscoelastic constitutive model for particulate composites with damage growth, Mechanics of Time-Dependent Materials, Vol. 8, pp. 65-94, 2004.
[8]          M. Marin, A. Chirila, A. Öchsner, S. Vlase, About finite energy solutions in thermoelasticity of micropolar bodies with voids, Boundary Value Problems, Vol. 2019, pp. 1-14, 2019.
[9]          W. N. Findley, D. Peterson, 1957, Prediction of long-time creep with ten year Creep data on four plastic laminates, Engineering Materials Research Laboratory, Division of Engineering, Brown …,
[10]        D. E. Walrath, Viscoelastic response of a unidirectional composite containing two viscoelastic constituents, Experimental Mechanics, Vol. 31, pp. 111-117, 1991.
[11]        Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry, Journal of the Mechanics and Physics of Solids, Vol. 13, No. 3, pp. 119-134, 1965.
[12]        Z. Hashin, B. W. Rosen, The elastic moduli of fiber-reinforced materials, Journal of applied mechanics, Vol. 31, No. 2, pp. 223-232, 1964.
[13]        D. E. Bowles, O. Griffin Jr, Micromechanics analysis of space simulated thermal stresses in composites. Part I: theory and unidirectional laminates, Journal of reinforced plastics and composites, Vol. 10, No. 5, pp. 504-521, 1991.
[14]        S. Vlase, C. Năstac, M. Marin, M. Mihălcică, A method for the study of the vibration of mechanical bars systems with symmetries, ACTA TECHNICA NAPOCENSIS-Series: APPLIED MATHEMATICS, MECHANICS, and ENGINEERING, Vol. 60, No. 4, 2017.
[15]        M. Marin, E. Carrera, S. Vlase, An extension of the Hamilton variational principle for piezoelectric bodies with dipolar structure, Mechanics of Advanced Materials and Structures, Vol. 30, No. 12, pp. 2453-2457, 2023.
[16]        Y. Zhao, G. Weng, Effective elastic moduli of ribbon-reinforced composites, 1990.
[17]        R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour, Journal of the Mechanics and Physics of Solids, Vol. 12, No. 4, pp. 199-212, 1964.
[18]        R. Hill, Theory of mechanical properties of fibre-strengthened materials—III. Self-consistent model, Journal of the Mechanics and Physics of Solids, Vol. 13, No. 4, pp. 189-198, 1965.
[19]        M. Marin, A. Seadawy, S. Vlase, A. Chirila, On mixed problem in thermoelasticity of type III for Cosserat media, Journal of Taibah University for Science, Vol. 16, No. 1, pp. 1264-1274, 2022.
[20]        R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, Vol. 13, No. 2, pp. 89-101, 1965.
[21]        M. Katouzian, S. Vlase, M. L. Scutaru, Finite element method-based simulation creep behavior of viscoelastic carbon-fiber composite, Polymers, Vol. 13, No. 7, pp. 1017, 2021.
[22]        Y. Weng, G. Wang, The influence of inclusion shape on the overall viscoelastic behavior of compoisites, J. Appl. Mech, Vol. 59, pp. 510-518, 1992.
[23]        T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, Vol. 21, No. 5, pp. 571-574, 1973.
[24]        M. Scutaru, H. Teodorescu-Draghicescu, S. Vlase, M. Marin, Advanced HDPE with increased stiffness used for water supply networks, Journal of Optoelectronics and Advanced Materials, Vol. 17, No. March-April 2015, pp. 484-488, 2015.
[25]        H. Teodorescu-Draghicescu, S. Vlase, L. Scutaru, L. Serbina, M. Calin, Hysteresis effect in a three-phase polymer matrix composite subjected to static cyclic loadings, Optoelectronics and Advanced Materials-Rapid Communications, Vol. 5, No. March 2011, pp. 273-277, 2011.
[26]        R. Pintelon, P. Guillaume, S. Vanlanduit, K. De Belder, Y. Rolain, Identification of Young's modulus from broadband modal analysis experiments, Mechanical systems and signal processing, Vol. 18, No. 4, pp. 699-726, 2004.
[27]        J. Liu, B. Liaw, Vibration and impulse responses of fiber-metal laminated beams, in Proceeding of.
[28]        A. D. Bhagat, C. Sujatha, DETERMINATION OF YOUNG'S MODULII AND DAMPING RATIOS OF FLEXIBLE HOSES FROM EXPERIMENTAL MODAL ANALYSIS, in Proceeding of.
[29]        M. Marin, A. Öchsner, M. M. Bhatti, Some results in Moore‐Gibson‐Thompson thermoelasticity of dipolar bodies, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 100, No. 12, pp. e202000090, 2020.
[30]        M. Marin, A. Hobiny, I. Abbas, Finite Element Analysis of Nonlinear Bioheat Model in Skin Tissue Due to External Thermal Sources, Mathematics, Vol. 9, No. 13, pp. 1459, 2021.
[31]        K. Ishfaq, M. Asad, M. Harris, A. Alfaify, S. Anwar, L. Lamberti, M. L. Scutaru, EDM of Ti-6Al-4V under nano-graphene mixed dielectric: a detailed investigation on axial and radial dimensional overcuts, Nanomaterials, Vol. 12, No. 3, pp. 432, 2022.
[32]        Y.-F. Hwang, H. Suzuki, A finite-element analysis on the free vibration of Japanese drum wood barrels under material property uncertainty, Acoustical Science and Technology, Vol. 37, No. 3, pp. 115-122, 2016.
[33]        S. Vlase, H. Teodorescu-Draghicescu, D. Motoc, M. Scutaru, L. Serbina, M. Calin, Behavior of multiphase fiber-reinforced polymers under short time cyclic loading, Optoelectron. Adv. Mater. Rapid Commun, Vol. 5, pp. 419-423, 2011.
[34]        Y. Li, Y. Li, Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element simulation, Construction and Building Materials, Vol. 200, pp. 301-309, 2019.
[35]        J. J. Men, Z. F. Guo, Q. X. Shi, Research on behavior of composite joints consisting of concrete and steel, Applied Mechanics and Materials, Vol. 166, pp. 815-818, 2012.
[36]        T. Matsuda, N. Ohno, Predicting the elastic-viscoplastic and creep behaviour of polymer matrix composites using the homogenization theory,  in: Creep and Fatigue in Polymer Matrix Composites, Eds., pp. 113-148: Elsevier, 2011.
[37]        P. Bratu, S. Vlase, N. Dragan, O. Vasile, I. Calin, C. M. Nitu, A. Toderita, Modal analysis of the inertial platform of the laser ELI-NP facility in magurele-Bucharest, Romanian Journal of Acoustics and Vibration, Vol. 19, No. 2, pp. 112-120, 2022.
[38]        A. Behera, D. K. Rajak, R. Kolahchi, M.-L. Scutaru, C. I. Pruncu, Current global scenario of Sputter deposited NiTi smart systems, journal of materials research and technology, Vol. 9, No. 6, pp. 14582-14598, 2020.
[39]        M. Marin, The Lagrange identity method in thermoelasticity of bodies with microstructure, International journal of engineering science, Vol. 32, No. 8, pp. 1229-1240, 1994.
[40]        W. Tian, L. Qi, C. Su, J. Zhou, Z. Jing, Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation, Composite Structures, Vol. 152, pp. 408-417, 2016/09/15/, 2016.
[41]        T. Zhu, Z. Wang, Research and application prospect of short carbon fiber reinforced ceramic composites, Journal of the European Ceramic Society, Vol. 43, No. 15, pp. 6699-6717, 2023/12/01/, 2023.
[42]        M. Katouzian, On the effect of temperature on creep behavior of neat and carbon fiber reinforced PEEK and epoxy-a micromechanical approach, 1994.
[43]        M. Katouzian, S. Vlase, M. Marin, M. L. Scutaru, Modeling Study of the Creep Behavior of Carbon-Fiber-Reinforced Composites: A Review, Polymers, Vol. 15, No. 1, pp. 194, 2023.
Volume 55, Issue 3
July 2024
Pages 538-551
  • Receive Date: 16 June 2024
  • Accept Date: 16 June 2024