[1] T. Belytschko, Y. Y. Lu, L. Gu, Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, pp. 229-256, 1994.
[2] E. L. Hill, Hamilton's Principle and the Conservation Theorems of Mathematical Physics, Reviews of Modern Physics, Vol. 23, No. 3, pp. 253-260, 07/01/, 1951.
[3] S. Limkatanyu, W. Sae-Long, J. Rungamornrat, C. Buachart, P. Sukontasukkul, S. Keawsawasvong, P. Chindaprasirt, BENDING, BUCKLING AND FREE VIBRATION ANALYSES OF NANOBEAM-SUBSTRATE MEDIUM SYSTEMS, Facta Universitatis Series Mechanical Engineering, Vol. 20, pp. 561-587, 12/01, 2022.
[4] S. A. Faghidian, A. Tounsi, Dynamic characteristics of mixture unified gradient elastic nanobeams, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, No. 3, pp. 539-552, 2022.
[5] P. Kooloth, L. M. Smith, S. N. Stechmann, Hamilton's principle with phase changes and conservation principles for moist potential vorticity, Quarterly Journal of the Royal Meteorological Society, Vol. 149, No. 752, pp. 1056-1072, 2023.
[6] H. Ma, Simplified Hamiltonian-based frequency-amplitude formulation for nonlinear vibration systems, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, No. 2, pp. 445-455, 2022.
[7] S.-Q. Wang, A variational approach to nonlinear two-point boundary value problems, Computers & Mathematics with Applications, Vol. 58, No. 11-12, pp. 2452-2455, 2009.
[8] X. Li, D. Wang, T. Saeed, Multi-scale numerical approach to the polymer filling process in the weld line region, Facta Universitatis, Series: Mechanical Engineering, Vol. 20, No. 2, pp. 363-380, 2022.
[9] S. Deng, X. Ge, The variational iteration method for Whitham-Broer-Kaup system with local fractional derivatives, Thermal Science, Vol. 26, No. 3 Part B, pp. 2419-2426, 2022.
[10] Y. Zhang, D. Tian, J. Pang, A fast estimation of the frequency property of the microelectromechanical system oscillator, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 41, No. 1, pp. 160-166, 2022/03/01, 2021.
[11] G. Breitbach, J. Altes, M. Sczimarowsky, Solution of radiative problems using variational based finite element method, International Journal for Numerical Methods in Engineering, Vol. 29, No. 8, pp. 1701-1714, 1990.
[12] C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) system, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33, No. 1, pp. 351-359, 2022.
[13] C.-H. He, C. Liu, Variational principle for singular waves, Chaos, Solitons & Fractals, Vol. 172, pp. 113566, 07/01, 2023.
[14] Y. Wang, Q. Deng, Fractal derivative model for tsunami travelling, Fractals, Vol. 27, 09/24, 2018.
[15] Y. WANG, J. AN, X. WANG, A VARIATIONAL FORMULATION FOR ANISOTROPIC WAVE TRAVELING IN A POROUS MEDIUM, Fractals, Vol. 27, No. 04, pp. 1950047, 2019.
[16] K.-L. WANG, C.-H. HE, A REMARK ON WANG’S FRACTAL VARIATIONAL PRINCIPLE, Fractals, Vol. 27, No. 08, pp. 1950134, 2019.
[17] W.-W. Ling, P.-X. Wu, A fractal variational theory of the Broer-Kaup system in shallow water waves, Thermal Science, Vol. 25, pp. 87-87, 01/01, 2021.
[18] K.-J. WANG, A FRACTAL MODIFICATION OF THE UNSTEADY KORTEWEG–DE VRIES MODEL AND ITS GENERALIZED FRACTAL VARIATIONAL PRINCIPLE AND DIVERSE EXACT SOLUTIONS, Fractals, Vol. 30, No. 09, pp. 2250192, 2022.
[19] K.-J. WANG, G.-D. WANG, F. SHI, H.-W. ZHU, GENERALIZED VARIATIONAL PRINCIPLES AND NEW ABUNDANT WAVE STRUCTURES OF THE FRACTAL COUPLED BOUSSINESQ EQUATION, Fractals, Vol. 30, No. 07, pp. 2250152, 2022.
[20] S. W. Yao, Variational Perspective To Fractal Kawahara Model In Microgravity Space, Fractals, Vol. 31, No. 01, pp. 2350012, 2023.
[21] B. Hong, Abundant explicit solutions for the M-fractional coupled nonlinear Schrödinger–KdV equations, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 42, No. 3, pp. 1222-1241, 2023.
[22] F.-F. Liang, X.-P. Wu, C.-L. Tang, Ground State Solution for Schrödinger–KdV System with Periodic Potential, Qualitative Theory of Dynamical Systems, Vol. 22, 01/23, 2023.
[23] F.-F. Liang, X.-P. Wu, C.-L. Tang, Normalized Ground-State Solution for the Schrödinger–KdV System, Mediterranean Journal of Mathematics, Vol. 19, 10/18, 2022.
[24] S.-W. Yao, R. Manzoor, A. Zafar, M. Inc, S. Abbagari, A. Houwe, Exact soliton solutions to the Cahn–Allen equation and Predator–Prey model with truncated M-fractional derivative, Results in Physics, Vol. 37, pp. 105455, 2022.
[25] S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos, Solitons & Fractals, Vol. 117, pp. 84-93, 12/01, 2018.
[26] B. Hong, Exact solutions for the conformable fractional coupled nonlinear Schrödinger equations with variable coefficients, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 42, No. 2, pp. 628-641, 2023.
[27] M. Suleman, D. Lu, C. Yue, J. Ul Rahman, N. Anjum, He–Laplace method for general nonlinear periodic solitary solution of vibration equations, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 38, No. 3-4, pp. 1297-1304, 2019.
[28] D. Zhao, D. Lu, S. A. Salama, P. Yongphet, M. M. Khater, Soliton wave solutions of ion-acoustic waves a cold plasma with negative ions, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 41, No. 3, pp. 852-895, 2022.
[29] P.-H. Kuo, Y.-R. Tseng, P.-C. Luan, H.-T. Yau, Novel fractional-order convolutional neural network based chatter diagnosis approach in turning process with chaos error mapping, Nonlinear Dynamics, Vol. 111, 01/21, 2023.
[30] J. Lu, L. Ma, Numerical analysis of space-time fractional Benjamin-Bona-Mahony equation, Thermal Science, Vol. 27, pp. 1755-1762, 01/01, 2023.
[31] Z.-B. Li, J.-H. He, Fractional Complex Transform for Fractional Differential Equations, Mathematical and Computational Applications, Vol. 15, No. 5, pp. 970-973, 2010.
[32] J. Lu, L. Chen, Numerical analysis of a fractal modification of Yao-Cheng oscillator, Results in Physics, Vol. 38, pp. 105602, 05/01, 2022.
[33] J.-H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Physics Letters A, Vol. 376, pp. 257–259, 01/09, 2012.
[34] C.-H. HE, C. LIU, A MODIFIED FREQUENCY–AMPLITUDE FORMULATION FOR FRACTAL VIBRATION SYSTEMS, Fractals, Vol. 30, No. 03, pp. 2250046, 2022.
[35] C.-H. He, T. S. Amer, D. Tian, A. F. Abolila, A. A. Galal, Controlling the kinematics of a spring-pendulum system using an energy harvesting device, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 41, No. 3, pp. 1234-1257, 2022.
[36] C.-H. HE, C. LIU, J.-H. HE, K. A. GEPREEL, LOW FREQUENCY PROPERTY OF A FRACTAL VIBRATION MODEL FOR A CONCRETE BEAM, Fractals, Vol. 29, No. 05, pp. 2150117, 2021.
[37] H. Ma, Fractal variational principle for an optimal control problem, Journal of Low Frequency Noise, Vibration and Active Control, Vol. 41, No. 4, pp. 1523-1531, 2022.
[38] J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, Vol. 19, pp. 847-851, 03/01, 2004.
[39] X.-Y. Liu, Y.-P. Liu, Z.-W. Wu, Variational principle for one-dimensional inviscid flow, Thermal Science, Vol. 26, No. 3 Part B, pp. 2465-2469, 2022.
[40] X.-Q. Cao, B.-N. Liu, M.-Z. Liu, K.-C. Peng, W.-L. Tian, Variational principles for two kinds of non-linear geophysical KdV equation with fractal derivatives, Thermal Science, Vol. 26, No. 3 Part B, pp. 2505-2515, 2022.
[41] M.-Z. Liu, X.-Q. Zhu, X.-Q. Cao, B.-N. Liu, K.-C. Peng, Internal solitary waves in the ocean by semi-inverse variational principle, Thermal Science, Vol. 26, No. 3 Part B, pp. 2517-2525, 2022.
[42] X.-Y. Liu, Y.-P. Liu, Z.-W. Wu, Optimization of a fractal electrode-level charge transport model, Thermal Science, Vol. 25, No. 3 Part B, pp. 2213-2220, 2021.
[43] W.-W. Ling, P.-X. Wu, Variational theory for a kind of non-linear model for water waves, Thermal Science, Vol. 25, No. 2 Part B, pp. 1249-1254, 2021.
[44] Y. Shen, C.-H. He, A. A. Alsolami, D. Tian, Nonlinear Vibration With Discontinuities In A Fractal Space: Its Variational Formulation And Periodic Property, FRACTALS (fractals), Vol. 31, No. 07, pp. 1-9, 2023.