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Abstract 

The variational theory is an inextricable part of both continuum mechanics 

and physics, and plays an important role in mathematics and nonlinear 

science, however it is difficult to find a variational formulation for a 

nonlinear system, and it is more difficult for a fractional differential system. 

This paper is to search for a variational formulation for the Schrödinger-

KdV system with M-fractional derivatives. The fractional complex 

transformation is used to convert the system into a traditional differential 

system, and the semi-inverse method is further applied to establish a needed 

variational principle. 
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1. Introduction 

The variational principle is of paramount importance in engineering applications [1], it is an inextricable part of 
both continuum mechanics and physics. The most famous one is the Hamilton principle [2], which can be used to 

establish governing equations for a complex problem [3-5]. The variational principle is also used to search for an 

approximate solution [6, 7] and numerical solution [8] of a nonlinear differential equation, the most famous ones are 

Hamiltonian-Based frequency-amplitude formulation for nonlinear vibration systems [6], and the variational 

iteration method for nonlinear differential equations [9, 10], the variational-based finite element method [11]. 

Recently the variational theory in a fractal space [12, 13] became a hot topic in both mathematics and physics, 

because the basic assumptions in continuum mechanics become totally invalid, however the variational theory still 

holds, that means the energy conservation and mass conservation and Hamilton principle still work in a fractal space 

though the physical laws in a fractal space cannot be modelled by the differential equations. Variational principles 

for various solitary waves [14-19] nano/microelectromechanical systems [12], singular waves [13] and microgravity 

systems [20] in a fractal space were established. In this paper we will search for a variational formulation for 
Schrödinger-KdV system with M-fractional derivative [21]. 

2. Schrödinger-KdV system with M-fractional derivatives 

The Schrödinger-KdV system is a hot topic in both physics and mathematics [21-23], this paper considers the 

following Schrödinger-KdV system with M-fractional derivative [21]. 
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1 2 3( ) 0t x x xu uu u w     + + + =    (2) 

where the coefficients involved in Eq. (1) are real constants, w  is a complex function, while u  is a real-valued 

function. The M-fractional derivative is defined as [21, 24, 25]. 
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When 1 = = , Eqs.(1) and (2) turn to be the traditional Schrödinger-KdV system [22, 23]. When 3 0 = , Eq. 

(1) is the well-known Schrödinger equation for quantum waves [26, 27]. When the quantum wave travels through a 

moving dispersive medium with velocity of u, a dispersive term ( 3wu ) has to be considered in Eq. (1), while Eq. 

(2) describes a KdV-like solitary wave [28]. The dispersive medium can be considered as a fractal space, so the 

system can be modelled by a fractional differential model, which can also be used to model neural networks [29] and 

Benjamin-Bona-Mahony equation [30]. 

 

3. Fractional complex transformation 

The fractional complex transformation was first proposed in 2010 [31], it can be explained as an approximate 

transformation from a fractal space to a smooth space, in literature it was also called as the two-scale fractal 

transformation [32], and its geometrical explanation is available in Ref. [33]. 

According to the fractional complex transformation [31, 33], we introduce two new variables (W and U) defined 

as 

( ) , ( ).iw W e u U = =    (5) 

where the complex variables   and   are defined, respectively, as 
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where constants  
1 2,k k  and 

1 2,   are constants. Substituting Eqs. (5)-(7) into Eqs. (1) and (2), using the chain 

role given in Ref. [33], and separating the real part and the imaginary part, we have [20] 

2 2 3

1 1 2 2 1 2 3( ) 0k W k W W WU     − + + + =  (8) 
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where the prime is the derivative with respect to  . Combining Eq. (9) and Eq. (10) together, we have 
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where H  is an integration constant. By the fractional complex transformation [31, 33], the fractional 

Schrödinger-KdV system given in Eqs.(1) and (2) turns out to be the traditional differential system given in Eqs.(8) 

and (11), so the problem becomes extremely simple. 

 

4. Variational formulation 

This paper is to establish a variational formulation for Eqs. (8) and (11). To this end, we first consider a special 

case when 3 0 =  and 3 0 = , Eqs. (8) and (11) become, respectively, as 
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Eq. (11) is the well-known Duffing oscillator [34-37], its variational formulation is 
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Eq. (12) adopts the following variational formulation 
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The semi-inverse method [38] has to be adopted to search for a variational formulation for cases when 3 0   

and 3 0  . 

The semi-inverse method [38], we can construct a trial-functional in the form 

1 2( , ) ( ) ( ) ( , , , )J W U kJ W J U F W U W U d = + +   (16) 

where 1J  and 2J  are defined respectively in Eqs.(14) and (15), k is an unknown constant, and F  is an 

unknown function of W  and/or U  and/or their derivatives.  

The trial-functional given in Eq. (16) turns out to be 1J  or 2J  under special conditions. There are many 

alternative candidates for the trial-functions, see examples in Refs. [39-44].  

The Lagrange function in Eq. (16) can be expressed as 
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The Euler-Lagrange equations can be written as 
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Eqs. (18) and (19) imply that 
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where the variational derivative is defined as 
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Eqs.(20) and (21) should be equivalent to Eqs.(8) and (11), to this end, we set 
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According to the consistency of F , it requires 
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Eq. (25) implies that 

3 32k =    (26) 

From Eq. (26), the unknown parameter ( k ) can be determined: 
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From Eqs. (23) and (24), and in view of Eq. (27), F can be identified as 
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Finally, we obtain the following variational formulation 
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where the Lagrange function reads 
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5. Conclusion 

This paper applies the semi-inverse method to finding a variational formulation for the Schrödinger-KdV system 

with the M-fractional derivatives. 
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