Numerical Simulation of Laminar Flow of a Non-Newtonian Bentonite Solution in a Horizontal Pipe

Document Type : Research Paper

Authors

1 Laboratoire Ingénierie des Transports et Environnement (LITE), Université Constantine 1, Constantine 25000, Algeria

2 Laboratoire d'Energetique Appliquee et de Pollution, Faculté des Sciences de la Technologie, Université Frères Mentouri, Algeria

3 Groupe de Recherche en Sciences pour l’Ingénieur, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, France

Abstract

The present study constitutes a notable contribution to enhancing our understanding of the behavior exhibited by non-Newtonian fluids. The purpose of the study involves conducting numerical simulations that elucidate the laminar flow dynamics within a horizontal pipe. The investigated flowing medium consists of bentonite suspensions with varying concentrations. The rheological behavior of the fluid is accurately described using the Herschel-Bulkley model, a pseudo-plastic representation. The results obtained through this research have helped to meticulously analyze the influence of fluctuations in the rheological index n on the following flow key parameters: pressure drop, velocity, and coefficient of friction within the pipe. This analysis covers a range of generalized Reynolds numbers, all the values of which correspond to the laminar flow regime. The meticulous study of the flow parameters reveals a compelling alignment between the simulation results and the experimental measurements, which underscores the validity of the study's findings.

Keywords

Main Subjects

 
[1]          B. Le Fur, M. Martin, Rapport I. a-3. Transport en conduite de liquides non-newtoniens, Journées de l'hydraulique, Vol. 9, No. 1, pp. 1-7, 1967.
[2]          M. Mahfoud, S. Benhadid, M. Lebouché, Frottements et pertes de pression des fluides non newtoniens dans des conduites non circulaires, Comptes Rendus Mécanique, Vol. 333, No. 6, pp. 513-520, 2005.
[3]          A. O. Ali, S. A. Khamis, F. S. Seif, O. D. Makinde, Entropy analysis of the unsteady Darcian nanofluid flow in a cylindrical pipe with a porous wall, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 7321-7329, 2022.
[4]          T. Chinyoka, O. Makinde, Viscoelastic modeling of the diffusion of polymeric pollutants injected into a pipe flow, Acta Mechanica Sinica, Vol. 29, pp. 166-178, 2013.
[5]          U. Cartalos, P. Baylocq, J. Lecourtier, J. Piau, Caractérisation rhéologique et modélisation structurelle des systèmes argile-polymère. Application aux fluides de forage, Revue de l'institut Français du Pétrole, Vol. 52, No. 3, pp. 285-297, 1997.
[6]          M. Naimi, R. Devienne, M. Lebouché, Etude dynamique et thermique de l'écoulement de Couette-Taylor-Poiseuille; cas d'un fluide présentant un seuil d'écoulement, International journal of heat and mass transfer, Vol. 33, No. 2, pp. 381-391, 1990.
[7]          B. Fagla, M. Gradeck, C. Baravian, M. Lebouché, Étude expérimentale de l’hydrodynamique des suspensions non-newtoniennes de «grosses» particules dans une conduite horizontale, Annales des Sciences Agronomiques, Vol. 15, No. 1, 2011.
[8]          S. Paumier, FACTEURS DETERMINANT L'ORGANISATION ET LA RHEOLOGIE DU SYSTEME ARGILE-EAU POUR DES SUSPENSIONS DE SMECTITES,  Thesis, Ecole Supérieure d'Ingénieurs de Poitiers, 2007.
[9]          K. Benyounes, A. Benchabane, A. Mellak, Caractérisation rhéologique de la bentonite de maghnia en suspension aqueuse sans et avec additifs anioniques, 2010.
[10]        S. Gnambode, Simulation des grandes échelles des transferts thermo-convectifs dans les écoulements turbulents d'un fluide non-newtonien en conduite cylindrique,  Thesis, Paris Est, 2015.
[11]        S. N. López-Carranza, M. Jenny, C. Nouar, Pipe flow of shear-thinning fluids, Comptes Rendus Mécanique, Vol. 340, No. 8, pp. 602-618, 2012.
[12]        N. Roland, Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires,  Thesis, Institut National Polytechnique de Lorraine, 2010.
[13]        O. D. Makinde, Analysis of non-Newtonian reactive flow in a cylindrical pipe, 2009.
[14]        T. Chinyoka, O. D. Makinde, Computational dynamics of unsteady flow of a variable viscosity reactive fluid in a porous pipe, Mechanics Research Communications, Vol. 37, No. 3, pp. 347-353, 2010.
[15]        N. T. Tayeb, S. Hossain, A. H. Khan, T. Mostefa, K.-Y. Kim, Evaluation of hydrodynamic and thermal behaviour of non-newtonian-nanofluid mixing in a chaotic micromixer, Micromachines, Vol. 13, No. 6, pp. 933, 2022.
[16]        Y. Noori, A. R. Teymourtash, B. Zafarmand, Use of random vortex method in simulating non-newtonian fluid flow in a t-junction for various reynolds numbers and power-law indexes, International Journal of Engineering, Vol. 35, No. 5, pp. 954-966, 2022.
[17]        T. Chinyoka, O. Makinde, On transient flow of a reactive variable viscosity third-grade fluid through a cylindrical pipe with convective cooling, Meccanica, Vol. 47, pp. 667-685, 2012.
[18]        A. Benslimane, K. Bekkour, P. François, H. Bechir, Laminar and turbulent pipe flow of bentonite suspensions, Journal of Petroleum Science and Engineering, Vol. 139, pp. 85-93, 2016.
[19]        Z. Wang, W. Guo, W. Ding, K. Liu, W. Qin, C. Wang, Z. Wang, Numerical study on the hydrodynamic properties of bentonite slurries with Herschel-Bulkley-Papanastasiou rheology model, Powder Technology, Vol. 419, pp. 118375, 2023.
[20]        A. Abou-Kassem, M. Bizhani, E. Kuru, A review of methods used for rheological characterization of yield-power-law (YPL) fluids and their impact on the assessment of frictional pressure loss in pipe flow, Geoenergy Science and Engineering, pp. 212050, 2023.
[21]        R. Deng, B. Chen, C. Liu, Concentration dependence of yield stress of bentonite suspension and corresponding particle interactions, Computers and Geotechnics, Vol. 157, pp. 105358, 2023.
[22]        D. I. Al-Risheq, S. M. Shaikh, M. S. Nasser, F. Almomani, I. A. Hussein, M. K. Hassan, Enhancing the flocculation of stable bentonite suspension using hybrid system of polyelectrolytes and NADES, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 638, pp. 128305, 2022.
[23]        X. Li, Selective flocculation performance of amphiphilic quaternary ammonium salt in kaolin and bentonite suspensions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 636, pp. 128140, 2022.
[24]        Z. Deng, X. Liu, X. Zhou, Q. Yang, P. Chen, A. de la Fuente, L. Ren, L. Du, Y. Han, F. Xiong, Main engineering problems and countermeasures in ultra-long-distance rock pipe jacking project: Water pipeline case study in Chongqing, Tunnelling and Underground Space Technology, Vol. 123, pp. 104420, 2022.
[25]        H. Zhong, Y. Guan, Z. Qiu, B. P. Grady, J. Su, W. Huang, Application of carbon coated bentonite composite as an ultra-high temperature filtration reducer in water-based drilling fluid, Journal of Molecular Liquids, Vol. 375, pp. 121360, 2023.
[26]        J. H. Burger, Non-Newtonian open channel flow: the effect of shape,  Thesis, Cape Peninsula University of Technology, 2014.
[27]        R. P. Chhabra, J. F. Richardson, 2011, Non-Newtonian flow and applied rheology: engineering applications, Butterworth-Heinemann,
[28]        T. Bandyopadhyay, S. Sandhibigraha, S. K. Das, Experimental and CFD analysis of non-Newtonian pseudoplastic liquid flow through vertical helical coil, American Journal of fluid dynamics, pp. 56-68, 2014.
[29]        A. Metzner, J. Reed, Flow of non‐newtonian fluids—correlation of the laminar, transition, and turbulent‐flow regions, Aiche journal, Vol. 1, No. 4, pp. 434-440, 1955.
[30]        J. Yin, C. Teodosiu, Constrained mesh optimization on boundary, Engineering with Computers, Vol. 24, No. 3, pp. 231-240, 2008.
[31]        W. Jeong, J. Seong, Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods, International Journal of Mechanical Sciences, Vol. 78, pp. 19-26, 2014.
[32]        A. Katz, V. Sankaran, Mesh quality effects on the accuracy of CFD solutions on unstructured meshes, Journal of Computational Physics, Vol. 230, No. 20, pp. 7670-7686, 2011.
[33]        F. Afshari, H. G. Zavaragh, B. Sahin, R. C. Grifoni, F. Corvaro, B. Marchetti, F. Polonara, On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers, Mathematics and Computers in Simulation, Vol. 152, pp. 51-68, 2018.
[34]        J. L. Thomas, B. Diskin, C. L. Rumsey, Towards verification of unstructured-grid solvers, AIAA journal, Vol. 46, No. 12, pp. 3070-3079, 2008.
[35]        M. C. Ramos, A. L. Costa, V. V. A. Silva, C. P. B. Lima, M. A. F. Veloso, Numerical simulation and validation of laminar flow through a 2D pipe using computational fluid dynamics, Brazilian Journal of Development, Vol. 9, No. 10, pp. 28793-28807, 2023.
[36]        R. Yin, W. Chow, Comparison of four algorithms for solving pressure-velocity linked equations in simulating atrium fire, International Journal on Architectural Science, Vol. 4, No. 1, pp. 24-35, 2003.
[37]        I. Dzijan, Z. Virag, S. Krizmanic, COMPARISON OF THE SIMPLER AND THE SIMPLE ALGORITHM FOR SOLVING THE NAVIER-STOKES EQUATIONS ON A COLLOCATED GRID, Transactions of FAMENA, Vol. 30, No. 1, pp. 27-36, 2006.
Volume 55, Issue 4
October 2024
Pages 552-566
  • Receive Date: 08 February 2024
  • Revise Date: 04 March 2024
  • Accept Date: 12 March 2024