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        Abstract 

The present study constitutes a notable contribution to enhancing our 

understanding of the behavior exhibited by non-Newtonian fluids. The 

purpose of the study involves conducting numerical simulations that 

elucidate the laminar flow dynamics within a horizontal pipe. The 

investigated flowing medium consists of bentonite suspensions with 

varying concentrations. The rheological behavior of the fluid is accurately 

described using the Herschel-Bulkley model, a pseudo-plastic 

representation. The results obtained through this research have helped to 

meticulously analyze the influence of fluctuations in the rheological index 

n on the following flow key parameters: pressure drop, velocity, and 

coefficient of friction within the pipe. This analysis covers a range of 

generalized Reynolds numbers, all the values of which correspond to the 

laminar flow regime. The meticulous study of the flow parameters reveals 

a compelling alignment between the simulation results and the 

experimental measurements, which underscores the validity of the study's 

findings. 
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1. Introduction 

The study of non-Newtonian suspensions is considered to be one of the most common studies currently 

undertaken in fluid mechanics because of their extensive use in pipeline transport operations and in other important 

industrial fields (pharmaceutical, biological, petroleum, etc.). 

The studies of non-Newtonian fluid dynamics which appeared in many articles published during the last 
decades focused on the hydrodynamic properties of these fluids, such as pressure drops in pipes [1]. For example 

[2] conducted this study in a non-circular pipe. Among these fluids, non-Newtonian suspensions and solutions 

stand out for their intricately complex rheological properties, making them the focal point of extensive study, as 

evidenced by research such as that conducted by [3, 4]. Many authors have published the results of their studies 

on these fluids [5-7]. Various mathematical models have been used for their modeling.  Several experimental 

studies have also been conducted on these fluids, such as the studies on the bentonite solution which have been 

published by [8, 9]. 

In recent years, various researches consisted in the study of the dynamics of these materials in different flow 

regimes and the problem of transition to turbulence [10-12]; conducted studies related to the influence of the 

variation of the Reynolds number on the profile of the velocity in a pipe; also [13-16] analyzed numerically  the 

hydrodynamic and thermal behaviors of these fluids as the flow behavior index n and the Reynolds number Re are 

varied; usually the increase or decrease in the flow behavior index n depends on the concentrations of suspensions 
added to non-Newtonian substances as was observed by [5, 7, 8, 17-20]. Given the challenging behavior of 
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bentonite solutions, a significant number of researchers are presently directing their attention towards conducting 

a thorough investigation of the intermolecular, ionic, and electrical properties intrinsic to these non-Newtonian 

substances. This pursuit aims to enhance the comprehension of diverse phenomena associated with them across 

various domains. This trend is exemplified in the studies published by [21-25]. 

The present study aims to clarify the influence of the flow behavior index n in the viscosity equation and the 

Reynolds number on the variation of the velocity profile and the friction coefficient in a circular pipe.  The effects 

of these two parameters on the shear stress at the inner wall of the pipe are also analyzed. This study has been 

achieved by increasing the concentration of bentonite in the dispersing solution (water) and by increasing the initial 

velocity that affects the Reynolds number. The obtained results have been compared with the experimental data 
published by [18]. 

 

2. Nomenclature 

 

 

D               pipe diameter D=2R (m) 

k            flow consistency index (Pa.sn) 

L            pipe length (m) 

n                flow behavior index  

r                  radial coordinate (m) 

R                 dimensionless radius 

ReMR                 Metzner and Reed generalized Reynolds number  

U                dimensionless axial velocity 

v               instantaneous velocity (m.s-1) 

V                 dimensionless radial velocity  

Vm                  initial velocity or average velocity at the entrance (m.s-1) 

Vr            radial velocity component (m.s-1) 

Vz            axial velocity component (m.s-1) 

Vθ            azimuthal velocity component (m/s) 

W                dimensionless angular velocity 

z                  axial coordinate (m)  

Z                 dimensionless axial length  

Greek letters 

γ             shear rate(s-1) 

θ                  angular coordinate (m)           

ρ                density (kg.m-3) 

τ            shear stress (Pa) 

τ0            yield stress (Pa) 

μeff               effective viscosity of the fluid (Pa. s) 

 

 

 

3. Mathematical Model  

From the experimental results obtained by [18] on the thixotropy of the fluid studied and the elasticity and 

viscous models of a bentonite suspension, we can consider that the mathematical formulation closest to the 

modeling is the Herschel Bulkley model:  

𝜏 = 𝜏0
𝐻 + 𝑘�̇�𝑛                      𝑓𝑜𝑟            |𝜏𝑦𝑥| > |𝜏0

𝐻| (1) 

 

�̇� = 0                                   𝑓𝑜𝑟            |𝜏𝑦𝑥| < |𝜏0
𝐻| (2) 

 

Where  τ represents the shear stress, τ0 the yield stress of the studied fluid, �̇� the flow shear rate, n is the flow 

behavior index of the fluid, and k is the flow consistency index. 

Table 1 presents the rheological and physical characteristics of the used fluid (Bentonite solution at different 

concentrations); these results have been taken from the experimental studies of [18, 26]. 

Table 1: Rheological and physical properties for Bentonite solution at different concentrations   

 n k τ0(Pa) ρ(kg.m-3) 

Bentonite (8%) 0,59 0,57 10,58 1050 

Bentonite (5%) 0,68 0,11 0,03 1030 

Bentonite (3,5%) 0,79 0,03 0,02 1022 

 
We consider the stationary and laminar flow (Re≤ 2100) of Herschel bulkley fluid inside a circular pipe of length 
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L and radius R such that the value of (L/R) is very large, see Fig. 1 and Fig. 2.  

 

The mass and momentum conservation equations, which govern this flow, are as follows [27] 

Continuity equation: 
𝜕𝜌

𝜕𝑡
+

1

𝑟

 𝜕

𝜕𝑟
(𝜌𝑟𝑉𝑟) +

1

𝑟

 𝜕

𝜕𝜃
(𝜌𝑉𝜃) +

 𝜕

𝜕𝑧
(𝜌𝑉𝑧) = 0 

(3) 

 

Momentum equations: Momentum Equations in r, θ, and z directions, respectively: 

In r direction: 

𝜌 (
𝜕𝑉𝑟

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝑟
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𝜕𝑧
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1

𝑟

𝜕

𝜕𝑟
(𝜇𝑒𝑓𝑓𝑟

𝜕𝑉𝑟
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1
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𝜕𝑟

𝜕

𝜕𝑟
(

𝑉𝑟

𝑟
)] + 𝜌𝑔𝑟 

(4) 
 

 

Fig. 1. Geometry and coordinate system of the pipe flow 

 

 

Fig. 2. schematic representation of the laminar pipe flow in the r-z plane 

 

In θ direction: 

𝜌 (
𝜕𝑉𝜃
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In z direction: 
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(6)    

Where: 

• Vr(r,θ,z), Vθ(r,θ,z), and Vz(r,θ,z) are the radial, azimuthal, and axial velocity components, respectively, 

• p(r,θ,z) is the pressure, 

• ρ is the density of the fluid, 

• μeff   denotes the effective viscosity of the Hershel-Bulkley fluid, expressed as [28] 

𝜇𝑒𝑓𝑓 =
𝜏0

�̇�
+ 𝑘(�̇�)𝑛−1                      𝑓𝑜𝑟          𝜏 ≥  𝜏0 (7) 

  

𝜇𝑒𝑓𝑓 = ∞                                    𝑓𝑜𝑟             𝜏 ≤  𝜏0 (8) 

 

The fluid is considered as incompressible with the assumption of a steady flow. The following boundary 

conditions are adopted: 

 

⚫ Stationary flow: 
𝜕

𝜕𝑡
 

⚫ Incompressible fluid: 𝜌=cte 

⚫ There is no rotation of the fluid in the pipe and the flow is axisymmetric flow: 
𝜕

𝜕𝜃
 

⚫ The boundary conditions: 

✓ At the entrance to the pipe: 

{
0 ≤ 𝑟 ≤ 𝐷/2

0 ≤ 𝜃 ≤ 𝜋
𝑧 = 0

                                                   {
𝑉𝑟 = 𝑉𝜃

𝑉𝑧 = 𝑉0
 

(9a) 

 

✓ At the pipe wall: 

{
𝑟 = 𝐷/2

0 ≤ 𝜃 ≤ 𝜋
0 ≤ 𝑧 ≤ 𝑙

                                      𝑉𝑟 = 𝑉𝜃 = 𝑉𝑧 = 0 
(10b) 

✓ At the exit of the pipe: 

{
0 ≤ 𝑟 ≤ 𝐷/2

0 ≤ 𝜃 ≤ 𝜋
𝑧 = 𝑙

                                
𝜕𝑉𝑟

𝜕𝑧
=

𝜕𝑉𝜃

𝜕𝑧
=  

𝜕𝑉𝑍

𝜕𝑧
= 0 

 

(11c) 

 

In order to extend and generalize the problem, the use of equations (3) to (6) in their dimensionless form is 

necessary. We 

define the non-dimensional quantities, as follows 

 

R =
r

D
        Z =

z

L
            U =

Vz

Vm
                 W =

Vθ

Vm
                    V =

Vr

Vm
        P∗ =

P

ρV0
2   

 
By using these non-dimensional quantities, the conservation equations (3) to (6) , will then be written as follows 

 

Dimensionless continuity equation: 
1

R
+

 𝜕(𝑅𝑉)

𝜕𝑅
+

 𝜕𝑈

𝜕𝑍
= 0 

(12) 

                                                                                                                                                               

 

Dimensionless momentum equations 

radial direction (direction R)  
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1
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+
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1
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V
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+

R
𝜕𝜇𝑒𝑓𝑓

𝜕𝑅

𝜕

𝜕𝑅
(

V

R
)]        (13) 

 

Axial direction (direction Z)  

 
1

R
+

𝜕(𝑅𝑉𝑈)

𝜕𝑅
+

𝜕(𝑈𝑈)

𝜕𝑍
= −

𝜕𝑃∗

𝜕𝑍
+

1

Re
[

1

R

𝜕

𝜕𝑅
(𝜇𝑒𝑓𝑓R

𝜕𝑈

𝜕𝑅
) +

𝜕

𝜕𝑍
(𝜇𝑒𝑓𝑓

𝜕𝑈

𝜕𝑍
)] +

1

Re
[

𝜕𝜇𝑒𝑓𝑓

𝜕𝑅

𝜕𝑉

𝜕𝑍
+

𝜕𝜇𝑒𝑓𝑓

𝜕𝑍
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𝜕𝑍
]                                             

(14) 

 

The momentum equation in the θ direction can be neglected from the hypothesis of axisymmetric flow, for this 
reason we find only the equation on the axial and radial direction. 

Now the boundary conditions for the dimensionless equations of continuity and momentum as fellow:  

✓ At the entrance to the pipe 

{
0 ≤ 𝑅 ≤ 0.5

𝑎𝑛𝑑
𝑧 = 0

                                                     

{V = 0
U = 1

 

(15a) 

 

 

✓ At the pipe wall: 

{
𝑅 = 0,5

𝑎𝑛𝑑
0 ≤ 𝑍 ≤ 𝐿

                                             𝑈 = 𝑉 = 0 
(16b) 

                                                        

✓ At the exit of the pipe: 

{
0 ≤ 𝑅 ≤ 0.5

and
𝑍 = 𝐿

                            
𝜕V

𝜕𝑍
=  

𝜕U

𝜕𝑍
= 0 

 

(17c) 

 

From the equation provided (11) and (12), the Reynolds number (Re) can be determined as follows: 

 Re =
ρV0

2D

μ𝑒𝑓𝑓
                                                                                                                                                    (18) 

In general, for non-Newtonian liquids the effective viscosity is used for calculation and defined [28] 

𝜇𝑒𝑓𝑓 = 𝑘′ (
8𝑉

𝐷
)

𝑛′−1

 
(19) 

          

When:    𝑘′ = 𝑘
3𝑛′+1

4𝑛′          and     𝑛′ = 𝑛     for some the models of power low and Herschel- Bulkley. 

Substituting into equation (12) we find: 

Re =
𝜌𝐷𝑛𝑉2−𝑛

𝑘 (
3𝑛 + 1

4𝑛 )
𝑛

∗ 8𝑛−1

 
(20) 

Here, Re represents a generalized Reynolds number (ReMR) valid for all time-independent non-Newtonian 

fluids represents by Metzner et Reed [29]. 

 

4. Numerical methods: 

4.1.  Grid generation 

Achieving accurate numerical results requires the creation of suitable meshes for the numerical simulation 

using Ansys fluent. This is confirmed by a number of authors, such as [30] who presented a study on the 
improvement of  the characteristics of the geometric meshing by improving the quality of the mesh at the 

boundaries. Also, the researchers [31] conducted studies to compare the efficiency of the finite volume method 

with that of finite elements method using various simulation meshes. On the other hand, some researchers [32-35] 

investigated the properties of mesh modification based on the node and element, and concluded that the numerical 

modeling is closely related to the shape of mesh used, and that the shape of quadratic element mesh gives better 

results than the shape of triangular element for numerical modeling of flow through a cylinder, whether in two or 

in three dimensions.  

In order to reach the best precision of the numerical solution in the present study, we chose the mesh after three 

trials using three different types of mesh.  Different features characterize each mesh, for the same dimensions and 

geometric shape of the three-dimensional cylinder. Table 2 summarizes the most important differences in the 

meshes.  
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Table 2 Characteristics of the three tried mesh types  

                   Cases  

Differences  

Case 01 Case 02 Case 03 

Free face mesh type Single quadrilateral Single quadrilateral Single quadrilateral 

mesh type Non uniform  uniform Non uniform 

Nodes Number in the 

boundary layer  

20  / 20 

rate of growth 1.2 1. 1.2 

Number of nodes 484484 100793 352772 

Number of volumes 473000 96120 345900 

 

The simulation results are presented in Fig. 3 and compared with the measurements of [18]. It can be observed 

that the accuracy of the simulation process is closely related to the mesh, and that the rise of the number of cells 

and nodes plays an important role in improving the precision of the numerical results, especially at the region near 
the walls of the cylinder for both the velocity profile and pressure drop, especially with viscous materials. 

The best results in these three trials are obtained with the type 1 mesh. Hence, it is adopted for all the simulation 

processes in this study. The mesh is presented in Fig. 4. 

 

 

Fig. 3.Dependence of the numerical modeling results on mesh type   

 

 

 

Fig. 4. Illustration of the geometry and mesh used 

 

4.2. Solution of the governing equations 

The calculations were done using the commercial CFD code “ANSYS FLUENT version R2 2022”. The finite 

volume method is used in this code to discretize the governing partial differential equations. The second order 

upwind differencing scheme is used for the formulation of the convection-diffusion contribution to the coefficients 
in the finite-volume equations. The discretization yields a set of linear algebraic equations for the velocity 

components and the pressure. A pressure-velocity coupling algorithm is then used to solve iteratively this set of 

algebraic equations. This coupling was chosen among the three pressure-velocity coupling algorithms available in 

ANSYS (SIMPLE, SIMPLER and Coupled). Previous studies on these couplings [36, 37] have shown a small 

difference in the convergence of the solutions, in addition to the speed and time of the simulation processes. 
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The results of the simulations achieved with each of these couplings are shown in Fig. 5.  One can notice that 

the results of numerical modeling using the Coupled algorithm are the closest to the experimental results. As a 

consequence, this method was chosen to perform all the simulations reported in the present study.  The algorithm 

is presented in the Appendix.  

 The convergence criteria for terminating the iterations of all the numerical simulations performed in this study 

are based on the normalized residuals for each governing equation. The computations are stopped when the scaled 

residuals for the continuity and momentum equations reach values below 10-5. Once these computations are 

completed, the results obtained are analyzed with the post-processing capability embedded in the code.  
 

 

Fig. 5. Comparison of the numerical modeling results obtained using different pressure velocity coupling algorithms with the 

measurements of Benslimane et al [12] 

 

5. Results and discussions: 

 

  The results obtained throughout this research are presented graphically in figures 5-11. 

 

5.1. Effect of the index n 

First, we studied the effect of the index n on the flow of the fluid inside the pipe. We took into account the 

three fluids with different concentrations of bentonite and modeled them using the rheological and physical 
properties shown in Table 1. We also simulated the flow of the pure base fluid i.e. water, which is a Newtonian 

fluid, in order to understand the effect of the non-Newtonian behavior well. The computational results obtained 

for bentonite solution flow inside the cylinder were compared with the experimental results of the study performed 

by [18] in the laminar regime. This comparison was achieved by computing the relative error (or the percentage 

error) between the numerical values and the experimental data. The error is defined as: 

%Error=
[𝑋]𝑛−[𝑋]𝑒

[𝑋]𝑛
∗ 100                                                                                            (21) 

 

Where [X]n is the value of numerical modeling and [X]e is the value of experimental study. 

 

5.1.1. Velocity profile  

 

 

 

Fig. 6 represents the velocity profile at the exit of the duct for the three bentonite solutions and also for the 

base fluid water. The results show that as the concentration of bentonite increases, the fluid becomes more viscous, 

exhibits more pronounced shear-thinning behavior and forms a plug zone in the region around the axis of the 
cylinder. This is due to the rheological properties of these fluids, which are evident in the reduction of the n index 

value with the augmentation of bentonite concentration. These observations are in accord with the mathematical 

relations and equations of the Poiseuille flow of a Hershel Bulkley fluid given in the studies of Chhabra and 

Richardson [27]. 
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Fig. 6. Mean axial laminar velocity profiles for the three bentonite solutions and water 

 

 

 

Fig. 7. Comparison of the numerical and experimental dimensionless velocity profiles for the three values of the index n, A: 

n=0.79, B: n=0.68 and C: n=0.59 

Fig. 7 shows the comparison between the present numerical studies and Benslimane et al’s experimental data 

[12]. The numerical results are very close to the experimental data, especially for low-concentration bentonite 

solutions. In the case of 3.5% and 5% concentration bentonite the percentage error varies in the interval ±2% to 

±3%, while it reaches up to ±7% for the 8% concentration bentonite. The discrepancy in the value of the error is 

due to the complex rheological characteristics, from the increase in the yield stress τ0 to the augmentation of the 

volumetric mass value of liquid, which leads to an imbalance in the results of fluid modeling inside the pipe. 

Moreover, as the concentration rises, intricate particle interactions become more pronounced, leading to 

aggregation and complex structural formations. These interactions give rise to non-linear rheological behaviors, 

including shear-thinning and yield stress, which significantly affect flow properties. 

For a more understanding of the characteristics and effects resulting from varying concentrations of bentonite 

and the index n, an in-depth investigation was conducted. The study focused on examining the pressure drop along 
the length of the cylinder. Additionally, an analysis of the pressure distribution between the center and inner wall 

of the cylinder was carried out at both the inlet and outlet sections. The results presented in the following subsection 
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support and corroborate these observations, providing valuable insights into the intricate relationship between 

material properties, pressure variations, and mechanical conditions within the cylinders.  

 

5.1.2. Pressure  

 

Table 3 presents the values of the total pressure drop at the level of the inner wall of the cylinder along the 

pipe. We can notice an increase in the total drop values with an increase in the concentration of bentonite and a 

decrease in the index n. These results can also reinforce and justify the reason for the appearance of the velocity 
profile being flatter at high values of bentonite concentration. This increase can be attributed to the fact that at 

higher concentrations of bentonite in the mixture, the particles are more densely packed within the fluid. This 

dense packing increases the effective viscosity of the mixture. Viscosity can be thought of as the fluid's resistance 

to flow. When the viscosity is higher due to the densely packed particles, the fluid encounters greater resistance as 

it travels through the pipe. This increased resistance translates into a higher pressure drop along the length of the 

pipe. Additionally, the increase in pressure drop may be explained by the interaction between particles. At higher 

concentrations their interaction can create a "hindered flow" effect. These fine particles have a tendency to stick 

together or hinder each other's movement, effectively impeding the smooth flow of the fluid. This hindrance further 

contributes to the increased pressure drop observed in high-concentration bentonite-water mixtures. 

 

Table 3 Pressure drop along a pipe for bentonite fluids of various concentrations 

                            Pressure       

                                    drop 

concentration 

ΔP(Pa) 

Newtonian Fluid (water 0% bentonite 

concentration) 

0.532112 

solution 3.5% bentonite concentration  123.061 

solution 5% bentonite concentration 514.315 

solution 8% bentonite concentration 6111.447 

 

In contrast, when the concentration of bentonite in the mixture decreases, the particles are more spread out 

within the fluid. This results in reduced particle-particle interactions and a lower effective viscosity. As a result, 

the fluid encounters less resistance to flow, leading to a lower pressure drop along the pipe. 

In order to further understand this, we studied the transverse dynamic pressure distribution between the axis of 

the cylinder and the inner wall at the inlet and outlet of the pipe. The results are presented in Fig. 8 A and B. 

 

 

Fig. 8.The pressure distribution within the pipe, A) inlet section, B) outlet section 

One can observe in Fig. 8A which corresponds to the inlet section that the pressure distribution within the 

cylindrical pipe is such that it is concentrated in the center of the entrance and that it is almost non-existent near 

the wall. However, Fig. 8B which corresponds to the outlet section shows a reversed pattern. This difference in 

pressure distribution between the inlet and outlet sections demonstrates the fascinating relationship between the 

concentration of bentonite in the non-Newtonian fluid and the resulting pressure differences. 
The increase in pressure difference with an increase in the concentration of bentonite can be explained by the 

influence of the concentration on the rheological behavior of the non-Newtonian fluid. Bentonite is a common 

rheology modifier used to alter the flow properties of fluids. When bentonite is added to the non-Newtonian fluid, 

it affects the fluid's viscosity and shear-thinning/thickening behavior. 

During the entrance phase, with low bentonite concentration, the fluid exhibits shear-thinning behavior. As the 

fluid accelerates towards the center of the cylinder, the shear rate in that region increases, leading to a decrease in 

viscosity. The lower viscosity near the center results in a decrease in pressure according to the Hagen-Poiseuille 
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equation and the Bernoulli principle. Therefore, the pressure is concentrated in the center of the cylinder. 

As the concentration of bentonite increases, the shear-thinning behavior becomes more pronounced. The fluid's 

viscosity reduces significantly, leading to a more substantial decrease in pressure near the center during the 

entrance phase. Consequently, the pressure difference between the center and the wall increases as the 

concentration of bentonite increases. 

At the outlet of the cylinder, the shear-thickening behavior dominates in the fluid. As the fluid exits the cylinder 

and its velocity decreases, the shear rate near the walls reduces, leading to an increase in viscosity. This increase 

in viscosity in the vicinity of the walls results in a rise in pressure along the walls and its diminishing towards the 

center. 
Now, for an in-depth study of the movement of bentonite solution inside the cylinder, we have studied the 

behavior of this material for different values of the Reynolds numbers, which fall in the laminar flow range.  also 

due to the fact that the non-Newtonian fluid at a high concentration of bentonite is very complex, and that its 

rheological properties and behaviors inside the pipe remain unstable, we preferred to take the lowest concentration 

values because they exhibit close similarity in rheological properties and yield stress values throughout the entire 

flow domain. 

The obtained results have been compared with the experimental data of [18] and gave very close values for the 

velocity profile at the exit of the pipe. 

5.2. Effect of the Reynolds number 

5.2.1. Velocity 

 

Fig. 9 and Fig. 10 show the evolution of the velocity profile as a function of Reynolds number for the two 

Bentonite solutions (n = 0.79) and (n = 0.68), respectively. There is a good agreement with the experimental results 

of [18] in the low Reynolds numbers range Re=360-620; also, for the large Reynolds numbers, which approach 

the transient regime Re values, one has a good agreement in the area close to the walls and a notable variation in 

the plug zone or the zone close to the axis. As Reynolds number increases, disturbances in the flow become more 

significant. The velocity profile in the axis region might start to deviate from the parabolic profile due to the 

complex interactions between viscosity changes and flow disturbances. These disturbances can cause fluctuations 

in velocity across the pipe diameter, which requires changing the measurement angle in more than one azimuthal 

position to extract a correct velocity profile. These profile defects have been noticed in similar experimental studies 
of the transition to turbulence for a non-Newtonian fluid by [10-12].  

 

 

 

Fig. 9. Variation of dimensionless velocity profile through the radial position of bentonite solution n=0.79 for different Reynolds 

numbers: A)420, B)520, C)1350 
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Fig. 10. Variation of dimensionless velocity profile through the radial position of bentonite solution n=0.68 for different Reynolds 

numbers: A)360, B)620, C)1150 

In a normal Newtonian fluid flow, as the Reynolds number approaches its flow transition value, small turbulent 

eddies begin to form in the near-wall region. These eddies enhance mixing and disrupt the stagnant boundary layer. 
The presence of the non-Newtonian behavior, like shear-thinning, can complicate even more the near-wall velocity 

profile by affecting the effective viscosity and the resistance to flow at the wall. This can be seen clearly in the 

increasing pressure drop on the inner wall of both fluids, which is shown in Fig. 11. 

5.2.2. Pressure  

 

Fig. 11 represents the pressure drop value at the level of the wall between the inlet and outlet of the cylinder at 

different Reynolds numbers. As we can see, increasing the concentration of bentonite leads to an increase in 

pressure drop. This can be explained by the fact that the Reynolds number increase enhances the combined effects 

of heightened viscosity and the non-Newtonian behavior of the solution. For a given Reynolds number, higher 

bentonite concentrations result in increased viscosity, generating greater resistance to flow. Moreover, the non-

Newtonian nature of bentonite solutions complicates their flow behavior, with viscosity changing with flow rate. 

For a given concentration, as the Reynolds number rises, the transition from laminar to turbulent flow amplifies 
fluid mixing and interaction, therefore intensifying pressure drop. 

5.2.3. Friction factor 

 

The evolution of the friction factor f as a function of ReMR is presented in Fig. 12. 

One can notice that there is a perfect agreement of the friction factor values at a low concentration of 3.5% of 

bentonite solution with the correlation of Fanning friction factor: 

    𝑓 =
16

𝑅𝑒𝑀𝑅
 (22) 

                                                                   

However, the values of the friction factor which correspond to the higher concentration of 5% are proportional 

to 10-1 f. This can likely be attributed to the intricate interplay between viscosity changes and flow behavior. The 

higher concentration of bentonite at 5% could lead to stronger particle interactions and a more pronounced shear-
thinning effect, causing a decrease in the effective viscosity as the flow rate increases. This reduction in viscosity 

at 5% concentration might result in a more streamlined flow with lower resistance to motion, consequently leading 

to a lower friction factor compared to the 3.5% concentration, where the viscosity might exhibit a different 

behavior under similar conditions. 
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Fig. 11. Variation of pressure drops of the bentonite solutions as a function of the Reynolds number 

 

 

 

Fig. 12. Comparison of the coefficient of friction of bentonite solutions with the Fanning friction factor correlation 

 

6. Conclusion 

To conclude, the numerical investigation conducted on bentonite solutions spanning different concentrations 

has provided a profound understanding of the intricate behaviors exhibited by these fluids. The examination, 

centered around crucial factors such as velocity profiles, Reynolds numbers in laminar flow, pressure drop, and 

friction factors, has unveiled the nuanced connections between fluid concentration, flow characteristics, and fluid 

properties. The study's outcomes have showcased the pivotal role played by bentonite concentration in altering 

viscosity and evoking non-Newtonian traits, subsequently influencing velocity profiles. The exploration of 

Reynolds numbers within the laminar flow domain has unraveled insights into the underlying flow dynamics and 

their consequences. Additionally, the research has laid bare a direct relationship between concentration and 

pressure drops, illustrating that heightened concentrations lead to amplified pressure losses attributable to escalated 

viscosity and flow resistance. The examination of friction factors has further underscored the intricate interplay 

between flow conditions and fluid attributes. On the whole, this comprehensive inquiry establishes a bedrock for 
refining the transportation and manipulation of bentonite solutions across a spectrum of real-world applications, 

thereby enriching our comprehension of the behavior of non-Newtonian fluids. 
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Appendix A. Ansys fluent process  
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