[1]          C. Wang, J. N. Reddy, K. Lee, 2000, Shear deformable beams and plates: Relationships with classical solutions, Elsevier.
                                                                                                                [2]          P. Fatehi, M. Z. Nejad, Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells, International Journal of Applied Mechanics, Vol. 6, No. 4, pp. 1450038, 2014.
                                                                                                                [3]          M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014.
                                                                                                                [4]          Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials, International Journal of Applied Mechanics, Vol. 8, No. 4, pp. 1650054, 2016.
                                                                                                                [5]          M. Z. Nejad, M. D. Kashkoli, Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux, International Journal of Engineering Science, Vol. 82, pp. 222-237, 2014.
                                                                                                                [6]          A. R. Shahani, F. Kiarasi, Numerical and experimental envestigation on post-buckling behavior of stiffened cylindrical shells with cutout subject to uniform axial compression, Journal of Applied and Computational Mechanics, Vol. 9, No. 1, pp. 25-44, 2023.
                                                                                                                [7]          M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B-Engineering, Vol. 154, pp. 410-422, 2018.
                                                                                                                [8]          T. Taghizadeh, M. Z. Nejad, M. D. Kashkoli, Thermo-elastic creep analysis and life assessment of thick truncated conical shells with variable thickness, International Journal of Applied Mechanics, Vol. 11, No. 9, pp. 1950086, 2019.
                                                                                                                [9]          A. Farajpour, A. Rastgoo, Size-dependent static stability of magneto-electro-elastic CNT/MT-based composite nanoshells under external electric and magnetic fields, Microsystem Technologies, Vol. 23, pp. 5815-5832, 2017.
                                                                                                                [10]        M. D. Kashkoli, K. N. Tahan, M. Z. Nejad, Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel, Steel and Composite Structures, Vol. 32, No. 6, pp. 701, 2019.
                                                                                                                [11]        M. Z. Nejad, T. Taghizadeh, S. J. Mehrabadi, S. Herasati, Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory, International Journal of Applied Mechanics, Vol. 9, No. 1, pp. 1750011, 2017.
                                                                                                                [12]        T. Ebrahimi, M. Z. Nejad, H. Jahankohan, A. Hadi, Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels, Steel and Composite Structures, Vol. 38, No. 2, pp. 189-211, 2021.
                                                                                                                [13]        M. D. Kashkoli, K. N. Tahan, M. Z. Nejad, Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure, International Journal of Applied Mechanics, Vol. 9, No. 6, pp. 1750086, 2017.
                                                                                                                [14]        M. H. Dindarloo, L. Li, Vibration analysis of carbon nanotubes reinforced isotropic doubly-curved nanoshells using nonlocal elasticity theory based on a new higher order shear deformation theory, Composites Part B-Engineering, Vol. 175, pp. 107170, 2019.
                                                                                                                [15]        N. K. Lamba, Impact of memory-dependent response of a thermoelastic thick solid cylinder, Journal of Applied and Computational Mechanics, Vol. 9, No. 4, pp. 1135-1143, 2023.
                                                                                                                [16]        M. Dehghan, M. Z. Nejad, A. Moosaie, Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases, International Journal of Engineering Science, Vol. 104, pp. 34-61, 2016.
                                                                                                                [17]        M. Z. Nejad, P. Fatehi, Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials, International Journal of Engineering Science, Vol. 86, pp. 26-43, 2015.
                                                                                                                [18]        M. Kashkoli, K. N. Tahan, M. Nejad, Time-dependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory, Journal of Mechanics, Vol. 33, No. 4, pp. 461-474, 2017.
                                                                                                                [19]        A. Amiri Delouei, A. Emamian, S. Karimnejad, Y. Li, An exact analytical solution for heat conduction in a functionally graded conical shell, Journal of Applied and Computational Mechanics, Vol. 9, No. 2, pp. 302-317, 2023.
                                                                                                                [20]        A. Sofiyev, N. Fantuzzi, Analytical solution of stability and vibration problem of clamped cylindrical shells containing functionally graded layers within shear deformation theory, Alexandria Engineering Journal, Vol. 64, pp. 141-154, 2023.
                                                                                                                [21]        M. Nejad, Z. Hoseini, A. Niknejad, M. Ghannad, Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels, Journal of Mechanics, Vol. 31, No. 1, pp. 1-6, 2015.
                                                                                                                [22]        Y.-W. Zhang, G.-L. She, Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment, Mechanics of Advanced Materials and Structures, pp. 1-13, 2023.
                                                                                                                [23]        C. Ipek, Vibration analysis of shear deformable cylindrical shells made of heterogeneous anisotropic material with clamped edges, Journal of Applied and Computational Mechanics, Vol. 9, No. 3, pp. 861-869, 2023.
                                                                                                                [24]        M. D. Kashkoli, M. Z. Nejad, Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells, Steel and Composite Structures, Vol. 28, No. 3, pp. 349-362, 2018.
                                                                                                                [25]        M. D. Kashkoli, M. Z. Nejad, Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials, Journal of Theoretical and applied Mechanics, Vol. 53, No. 4, pp. 1053-1065, 2015.
                                                                                                                [26]        I. Panferov, Stresses in a transversely isotropic conical elastic pipe of constant thickness under a thermal load, Journal of Applied Mathematics and Mechanics, Vol. 56, No. 3, pp. 410-415, 1992.
                                                                                                                [27]        H. Xiang, Z. Shi, T. Zhang, Elastic analyses of heterogeneous hollow cylinders, Mechanics Research Communications, Vol. 33, No. 5, pp. 681-691, 2006.
                                                                                                                [28]        M. Arefi, G. H. Rahimi, Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory, Scientific Research and Essays, Vol. 5, No. 12, pp. 1442-1454, 2010.
                                                                                                                [29]        M. Z. Nejad, G. H. Rahimi, Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load, Scientific Research and Essays, Vol. 4, No. 3, pp. 131-140, 2009.
                                                                                                                [30]        L. Xin, G. Dui, S. Yang, D. Zhou, Solutions for behavior of a functionally graded thick-walled tube subjected to mechanical and thermal loads, International Journal of Mechanical Sciences, Vol. 98, pp. 70-79, 2015.
                                                                                                                [31]        M. Z. Nejad, G. H. Rahimi, M. Ghannad, Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system, Mechanika, Vol. 77, No. 3, pp. 18-26, 2009.
                                                                                                                [32]        A. Yasinskyy, L. Tokova, Inverse problem on the identification of temperature and thermal stresses in an FGM hollow cylinder by the surface displacements, Journal of Thermal Stresses, Vol. 40, No. 12, pp. 1471-1483, 2017.
                                                                                                                [33]        M. Ghannad, M. Z. Nejad, Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends, Mechanika, Vol. 85, No. 5, pp. 11-18, 2010.
                                                                                                                [34]        J.-H. Kang, Field equations, equations of motion, and energy functionals for thick shells of revolution with arbitrary curvature and variable thickness from a three-dimensional theory, Acta Mechanica, Vol. 188, No. 1-2, pp. 21-37, 2007.
                                                                                                                [35]        M. Z. Nejad, M. Jabbari, M. Ghannad, A semi-analytical solution of thick truncated cones using matched asymptotic method and disk form multilayers, Archive of Mechanical Engineering, Vol. 61, No. 3, pp. 495--513, 2014.
                                                                                                                [36]        M. Ghannad, G. H. Rahimi, M. Z. Nejad, Determination of displacements and stresses in pressurized thick cylindrical shells with variable thickness using perturbation technique, Mechanika, Vol. 18, No. 1, pp. 14-21, 2012.
                                                                                                                [37]        B. Sundarasivarao, N. Ganesan, Deformation of varying thickness of conical shells subjected to axisymmetric loading with various end conditions, Engineering Fracture Mechanics, Vol. 39, No. 6, pp. 1003-1010, 1991.
                                                                                                                [38]        I. Mirsky, G. Herrmann, Axially symmetric motions of thick cylindrical shells, 1958.
                                                                                                                [39]        F. Witt, Thermal stress analysis of conical shells, Nuclear Structural Engineering, Vol. 1, No. 5, pp. 449-456, 1965.
                                                                                                                [40]        H. R. Eipakchi, S. Khadem, G. H. Rahimi S, Axisymmetric stress analysis of a thick conical shell with varying thickness under nonuniform internal pressure, Journal of Engineering Mechanics, Vol. 134, No. 8, pp. 601-610, 2008.
                                                                                                                [41]        M. Ghannad, M. Z. Nejad, Elastic solution of pressurized clamped-clamped thick cylindrical shells made of functionally graded materials, Journal of Theoretical and Applied Mechanics, Vol. 51, No. 4, pp. 1067-1079, 2013.
                                                                                                                [42]        K. Jane, Y. Wu, A generalized thermoelasticity problem of multilayered conical shells, International Journal of Solids and Structures, Vol. 41, No. 9-10, pp. 2205-2233, 2004.
                                                                                                                [43]        M. Ghannad, M. Z. Nejad, G. H. Rahimi, Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory, Mechanika, Vol. 79, No. 5, pp. 13-20, 2009.
                                                                                                                [44]        Y. Obata, N. Noda, Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material, Journal of Thermal Stresses, Vol. 17, No. 3, pp. 471-487, 1994.
                                                                                                                [45]        M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Composites Part B-Engineering, Vol. 45, No. 1, pp. 388-396, 2013.
                                                                                                                [46]        H. R. Eipakchi, Third-order shear deformation theory for stress analysis of a thick conical shell under pressure, Journal of Mechanics of Materials and Structures, Vol. 5, No. 1, pp. 1-17, 2010.
                                                                                                                [47]        G. Cao, Z. Chen, L. Yang, H. Fan, F. Zhou, Analytical study on the buckling of cylindrical shells with arbitrary thickness imperfections under axial compression, Journal of Pressure Vessel Technology, Vol. 137, No. 1, pp. 011201, 2015.
                                                                                                                [48]        M. Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading, International Journal of Engineering Science, Vol. 89, pp. 86-99, 2015.
                                                                                                                [49]        Ö. Civalek, Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory, Composites Part B-Engineering, Vol. 45, No. 1, pp. 1001-1009, 2013.
                                                                                                                [50]        M. Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of rotating thick cylindrical pressure vessels under non-uniform pressure: linear and non-linear thickness, Periodica Polytechnica Mechanical Engineering, Vol. 59, No. 2, pp. 65-73, 2015.
                                                                                                                [51]        S. Ray, A. Loukou, D. Trimis, Evaluation of heat conduction through truncated conical shells, International Journal of Thermal Sciences, Vol. 57, pp. 183-191, 2012.
                                                                                                                [52]        M. Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading, Composite Structures, Vol. 122, pp. 561-569, 2015.
                                                                                                                [53]        M. Jabbari, M. Z. Nejad, M. Ghannad, Thermoelastic analysis of rotating thick truncated conical shells subjected to non-uniform pressure, Journal of Solid Mechanics, Vol. 8, No. 3, pp. 466-481, 2016 .
                                                                                                                [54]        M. Jabbari, M. Z. Nejad, M. Ghannad, Stress analysis of rotating thick truncated conical shells with variable thickness under mechanical and thermal loads, Journal of Solid Mechanics, Vol. 9, No. 1, pp. 100-114, 2017.
                                                                                                                [55]        A. A. Hamzah, H. K. Jobair, O. I. Abdullah, E. T. Hashim, L. A. Sabri, An investigation of dynamic behavior of the cylindrical shells under thermal effect, Case Studies in Thermal Engineering, Vol. 12, pp. 537-545, 2018.
                                                                                                                [56]        M. D. Kashkoli, K. N. Tahan, M. Z. Nejad, Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness, International Journal of Applied Mechanics, Vol. 10, No. 1, pp. 1850008, 2018.
                                                                                                                [57]        H. Gharooni, M. Ghannad, M. Z. Nejad, Thermo-elastic analysis of clamped-clamped thick FGM cylinders by using third-order shear deformation theory, Latin American Journal of Solids and Structures, Vol. 13, pp. 750-774, 2016.
                                                                                                                [58]        M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness, Composites Part B-Engineering, Vol. 96, pp. 20-34, 2016.
                                                                                                                [59]        J. Lai, C. Guo, J. Qiu, H. Fan, Static analytical approach of moderately thick cylindrical ribbed shells based on first-order shear deformation theory, Mathematical Problems in Engineering, Vol. 2015, 2015.
                                                                                                                [60]        M. Z. Nejad, M. Jabbari, M. Ghannad, A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness, Acta Mechanica, Vol. 228, pp. 215-231, 2017.
                                                                                                                [61]        F. Aghaienezhad, R. Ansari, M. Darvizeh, On the stability of hyperelastic spherical and cylindrical shells subjected to external pressure using a numerical approach, International Journal of Applied Mechanics, Vol. 14, No. 10, pp. 2250094, 2022.
                                                                                                                [62]        O. Ifayefunmi, D. Ruan, Buckling of stiffened cone–cylinder structures under axial compression, International Journal of Applied Mechanics, Vol. 14, No. 7, pp. 2250075, 2022.
                                                                                                                [63]        M. Y. Ariatapeh, M. Shariyat, M. Khosravi, Semi-analytical large deformation and three-dimensional stress analyses of pressurized finite-length thick-walled incompressible hyperelastic cylinders and pipes, International Journal of Applied Mechanics, Vol. 15, No. 1, pp. 2250100, 2023.
                                                                                                                [64]        S. Mannani, L. Collini, M. Arefi, Mechanical stress and deformation analyses of pressurized cylindrical shells based on a higher-order modeling, Defence Technology, Vol. 20, pp. 24-33, 2023.
                                                                                                                [65]        M. Ghannad, M. P. Yaghoobi, 2D thermo elastic behavior of a FG cylinder under thermomechanical loads using a first order temperature theory, International Journal of Pressure Vessels and Piping, Vol. 149, pp. 75-92, 2017.
                                                                                                                [66]        S. Vlachoutsis, Shear correction factors for plates and shells, International Journal for Numerical Methods in Engineering, Vol. 33, No. 7, pp. 1537-1552, 1992.