Exploring Three-Dimensional MHD Maxwell Hybrid Nanofluid Flow: A Computational Study on a Stretching sheet

Document Type : Research Paper


Department of Mathematics, Faculty of Science, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan.


A three-dimensional Maxwell hybrid nanofluid under MHD effects is analyzed and shown across a stretched sheet. Molybdenum disulfide (MoS2) and graphene oxide (GO) nanoparticles combined with ethylene glycol (EG) make up the hybrid nanofluid. Coupled nonlinear partial differential equations are used to describe the controlling equations. These equations are then converted into coupled nonlinear ordinary differential equations using similarity transformations. Through the use of MATLAB programming and the bvp4c technique, these equations may be solved numerically. Figures and tables that illustrate the effects of the Deborah number, magnetic parameter, rotational parameter, and volume percentage of nanoparticles on temperature, velocity, skin friction coefficient, and Nusselt number have been studied. The salient characteristics are: The velocity decreases with increasing Deborah number, magnetic parameter, and rotational parameter values. The findings indicate that the surface temperature is increased by higher values of the Deborah number, magnetic parameter, and rotational parameter. The hybrid nanofluid exhibits greater values of temperature, velocity, and Nusselt number in comparison to the nanofluid. A comparison analysis agrees well with the previous studies.


Main Subjects

[1]          W. Jamshed, N. A. A. M. Nasir, S. S. P. M. Isa, R. Safdar, F. Shahzad, K. S. Nisar, M. R. Eid, A.-H. Abdel-Aty, I. Yahia, Thermal growth in solar water pump using Prandtl–Eyring hybrid nanofluid: a solar energy application, Scientific reports, Vol. 11, No. 1, pp. 18704, 2021.
[2]          A. Kosmala, Q. Zhang, R. Wright, P. Kirby, Development of high concentrated aqueous silver nanofluid and inkjet printing on ceramic substrates, Materials Chemistry and Physics, Vol. 132, No. 2-3, pp. 788-795, 2012.
[3]          Z. Liu, X. Yang, H. M. Ali, R. Liu, J. Yan, Multi-objective optimizations and multi-criteria assessments for a nanofluid-aided geothermal PV hybrid system, Energy Reports, Vol. 9, pp. 96-113, 2023.
[4]          M. Soltani, F. M. Kashkooli, M. A. Fini, D. Gharapetian, J. Nathwani, M. B. Dusseault, A review of nanotechnology fluid applications in geothermal energy systems, Renewable and Sustainable Energy Reviews, Vol. 167, pp. 112729, 2022.
[5]          P. S. Reddy, P. Sreedevi, A. J. Chamkha, Heat and mass transfer flow of a nanofluid over an inclined plate under enhanced boundary conditions with magnetic field and thermal radiation, Heat Transfer—Asian Research, Vol. 46, No. 7, pp. 815-839, 2017.
[6]          N. S. Anuar, N. Bachok, I. Pop, Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet, International Communications in Heat and Mass Transfer, Vol. 123, pp. 105236, 2021.
[7]          K. Hamid, W. Azmi, M. Nabil, R. Mamat, Improved thermal conductivity of TiO2–SiO2 hybrid nanofluid in ethylene glycol and water mixture, in Proceeding of, IOP Publishing, pp. 012067.
[8]          M. R. Eid, M. A. Nafe, Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition, Waves in Random and Complex Media, Vol. 32, No. 3, pp. 1103-1127, 2022.
[9]          H. R. Ashorynejad, A. Shahriari, MHD natural convection of hybrid nanofluid in an open wavy cavity, Results in Physics, Vol. 9, pp. 440-455, 2018.
[10]        M. K. Nayak, V. S. Pandey, S. Shaw, O. Makinde, K. Ramadan, M. B. Henda, I. Tlili, Thermo-fluidic significance of non Newtonian fluid with hybrid nanostructures, Case Studies in Thermal Engineering, Vol. 26, pp. 101092, 2021.
[11]        A. Tassaddiq, S. Khan, M. Bilal, T. Gul, S. Mukhtar, Z. Shah, E. Bonyah, Heat and mass transfer together with hybrid nanofluid flow over a rotating disk, AIP Advances, Vol. 10, No. 5, 2020.
[12]        P. Patil, M. Kulkarni, Analysis of MHD mixed convection in a Ag-TiO2 hybrid nanofluid flow past a slender cylinder, Chinese Journal of Physics, Vol. 73, pp. 406-419, 2021.
[13]        L. A. Lund, Z. Omar, I. Khan, E.-S. M. Sherif, Dual branches of MHD three-dimensional rotating flow of hybrid nanofluid on nonlinear shrinking sheet, Computers, Materials and Continua, Vol. 66, No. 1, pp. 127-139, 2020.
[14]        H. T. Alkasasbeh, M. K. A. Mohamed, MHD (SWCNTS+ MWCNTS)/H2O-Based Williamson Hybrid Nanofluids Flow Past Exponential Shrinking Sheet in Porous Medium.
[15]        M. Bouselsal, F. Mebarek-Oudina, N. Biswas, A. A. I. Ismail, Heat Transfer Enhancement Using Al2O3-MWCNT Hybrid-Nanofluid inside a Tube/Shell Heat Exchanger with Different Tube Shapes, Micromachines, Vol. 14, No. 5, pp. 1072, 2023.
[16]        W.-T. Wu, M. Massoudi, Recent advances in mechanics of non-Newtonian fluids, Fluids, Vol. 5, No. 1, pp. 10, 2020.
[17]        F. Selimefendigil, G. ┼×enol, H. F. Öztop, N. H. Abu-Hamdeh, A Review on Non-Newtonian Nanofluid Applications for Convection in Cavities under Magnetic Field, Symmetry, Vol. 15, No. 1, pp. 41, 2022.
[18]        W. Hasona, A. El-Shekhipy, M. Ibrahim, Combined effects of magnetohydrodynamic and temperature dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: Applications to oil refinement, International Journal of Heat and Mass Transfer, Vol. 126, pp. 700-714, 2018.
[19]        P. Sreedevi, P. S. Reddy, Williamson hybrid nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux and gyrotactic microorganism, Waves in Random and Complex Media, pp. 1-28, 2021.
[20]        Y.-M. Chu, F. Ahmad, M. I. Khan, M. Nazeer, F. Hussain, N. B. Khan, S. Kadry, L. Mei, Numerical and scale analysis of non-Newtonian fluid (Eyring-Powell) through pseudo-spectral collocation method (PSCM) towards a magnetized stretchable Riga surface, Alexandria Engineering Journal, Vol. 60, No. 2, pp. 2127-2137, 2021.
[21]        M. Subhas Abel, J. V. Tawade, M. M. Nandeppanavar, MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet, Meccanica, Vol. 47, pp. 385-393, 2012.
[22]        B. Prasannakumara, M. Gnaneswara Reddy, G. Thammanna, B. Gireesha, MHD Double-diffusive boundary-layer flow of a Maxwell nanofluid over a bidirectional stretching sheet with Soret and Dufour effects in the presence of radiation, Nonlinear Engineering, Vol. 7, No. 3, pp. 195-205, 2018.
[23]        R. Safdar, M. Jawad, S. Hussain, M. Imran, A. Akgül, W. Jamshed, Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of Buongiorno's model, Chinese Journal of Physics, Vol. 77, pp. 1465-1478, 2022.
[24]        S. Shah, N. Rafiq, F. A. Abdullah, S. Atif, M. Abbas, Slip and radiative effects on MHD Maxwell nanofluid with non-Fourier and non-Fick laws in a porous medium, Case Studies in Thermal Engineering, Vol. 30, pp. 101779, 2022.
[25]        M. Khan, M. Malik, T. Salahuddin, S. Saleem, A. Hussain, Change in viscosity of Maxwell fluid flow due to thermal and solutal stratifications, Journal of Molecular Liquids, Vol. 288, pp. 110970, 2019.
[26]        R. Biswas, M. S. Hossain, R. Islam, S. F. Ahmmed, S. Mishra, M. Afikuzzaman, Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation, Journal of Computational Mathematics and Data Science, Vol. 4, pp. 100048, 2022.
[27]        J. Ahmed, M. Khan, L. Ahmad, Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink, Journal of Molecular Liquids, Vol. 287, pp. 110853, 2019.
[28]        M. Farooq, S. Ahmad, M. Javed, A. Anjum, Magnetohydrodynamic flow of squeezed Maxwell nano-fluid with double stratification and convective conditions, Advances in Mechanical Engineering, Vol. 10, No. 9, pp. 1687814018801140, 2018.
[29]        P. Sreedevi, P. Sudarsana Reddy, M. Sheremet, Impact of homogeneous–heterogeneous reactions on heat and mass transfer flow of Au–Eg and Ag–Eg Maxwell nanofluid past a horizontal stretched cylinder, Journal of Thermal Analysis and Calorimetry, Vol. 141, pp. 533-546, 2020.
[30]        P. Sreedevi, P. S. Reddy, Effect of magnetic field and thermal radiation on natural convection in a square cavity filled with TiO2 nanoparticles using Tiwari-Das nanofluid model, Alexandria Engineering Journal, Vol. 61, No. 2, pp. 1529-1541, 2022.
[31]        S. Manjunatha, B. A. Kuttan, S. Jayanthi, A. Chamkha, B. Gireesha, Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection, Heliyon, Vol. 5, No. 4, 2019.
[32]        P. Sreedevi, P. S. Reddy, K. Suryanarayana Rao, Effect of magnetic field and radiation on heat transfer analysis of nanofluid inside a square cavity filled with silver nanoparticles: Tiwari–Das model, Waves in Random and Complex Media, pp. 1-19, 2021.
[33]        P. Sreedevi, P. S. Reddy, Combined influence of Brownian motion and thermophoresis on Maxwell three-dimensional nanofluid flow over stretching sheet with chemical reaction and thermal radiation, Journal of Porous Media, Vol. 23, No. 4, 2020.
[34]        T. Fahim, S. Laouedj, A. Abderrahmane, S. Alotaibi, O. Younis, H. M. Ali, Heat transfer enhancement in parabolic through solar receiver: a three-dimensional numerical investigation, Nanomaterials, Vol. 12, No. 3, pp. 419, 2022.
[35]        P. S. Reddy, P. Sreedevi, A. J. Chamkha, A. F. Al-Mudhaf, Heat and mass transfer boundary-layer flow over a vertical cone through porous media filled with a Cu–water and Ag–water nanofluid, Heat Transfer Research, Vol. 49, No. 2, 2018.
[36]        P. S. Reddy, P. Sreedevi, Buongiorno's model nanofluid natural convection inside a square cavity with thermal radiation, Chinese Journal of Physics, Vol. 72, pp. 327-344, 2021.
[37]        P. Sudarsana Reddy, P. Sreedevi, Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 1626-1636, 2022.
[38]        M. Uddin, S. Rasel, Numerical analysis of natural convective heat transport of copper oxide-water nanofluid flow inside a quadrilateral vessel, Heliyon, Vol. 5, No. 5, 2019.
[39]        M. Mustafa, T. Hayat, A. Alsaedi, Rotating flow of Maxwell fluid with variable thermal conductivity: an application to non-Fourier heat flux theory, International Journal of Heat and Mass Transfer, Vol. 106, pp. 142-148, 2017.
[40]        A. A. Akbar, N. A. Ahammad, A. U. Awan, A. K. Hussein, F. Gamaoun, E. M. Tag-ElDin, B. Ali, Insight into the role of nanoparticles shape factors and diameter on the dynamics of rotating water-based fluid, Nanomaterials, Vol. 12, No. 16, pp. 2801, 2022.
[41]        H. Alkasasbeh, Numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect, CFD Letters, Vol. 14, No. 3, pp. 39-52, 2022.
[42]        H. T. Alkasasbeh, Numerical Investigation of MHD Carreau Hybrid Nanofluid Flow over a Stretching Sheet in a Porous Medium with Viscosity Variations and Heat Transport, Journal of Computational Applied Mechanics, Vol. 54, No. 3, pp. 410-424, 2023.
Volume 55, Issue 1
January 2024
Pages 77-91
  • Receive Date: 04 December 2023
  • Revise Date: 13 January 2024
  • Accept Date: 25 January 2024