[1] C. Ambrus, Dynamic Analysis of Stresses in the Motor-Transmission Assembly of Mobile Power Drilling Installations, Ph. D Thesis, Transylvania University of Brasov, Brasov, Romania., 2017.
[2] C. Kaluba, A. Zingoni, Group-Theoretic Buckling Analysis of Symmetric Plane Frames, Journal of Structural Engineering, Vol. 147, pp. 04021153, 10/01, 2021.
[3] D. Holm, T. Schmah, C. Stoica, 2009, Geometric Mechanics and Symmetry,
[4] J. E. Marsden, T. S. Ratiu, 2013, Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, Springer Science & Business Media,
[5] S. F. Singer, 2004, Symmetry in Mechanics, Springer, Berlin/Heidelberg, Germany, 1ed.
[6] Z. Celep, On the axially symmetric vibration of thick circular plates, Ingenieur-Archiv, Vol. 47, No. 6, pp. 411-420, 1978/11/01, 1978.
[7] A. Zingoni, N. Enoma, Dual-purpose concrete domes: A strategy for the revival of thin concrete shell roofs, in Proceeding of, Elsevier, pp. 2686-2703.
[8] A. Zingoni, N. Enoma, On the strength and stability of elliptic toroidal domes, Engineering Structures, Vol. 207, pp. 110241, 2020.
[9] Y. Chen, J. Feng, Generalized Eigenvalue Analysis of Symmetric Prestressed Structures Using Group Theory, Journal of Computing in Civil Engineering, Vol. 26, pp. 488-497, 07/01, 2012.
[10] E. Zavadskas, R. Bausys, J. Antucheviciene, Civil Engineering and Symmetry, Symmetry, Vol. 11, pp. 501, 04/05, 2019.
[11] L. Codarcea-Munteanu, M. Marin, S. Vlase, The study of vibrations in the context of porous micropolar media thermoelasticity and the absence of energy dissipation, Journal of Computational Applied Mechanics, Vol. 54, No. 3, pp. 437-454, 2023.
[12] I. M. J. J. Ganghoffer, Similarity, Symmetry and Group Theoretical Methods in Mechanics, in International Centre for Mechanical Sciences, Udine, Italy, 2015.
[13] I. G. D. Mangeron, S. Vlase, Symmetrical Branched Systems Vibrations, Sci. Mem. Rom. Acad, Vol. 12, pp. 232-236, 1991.
[14] M. Luminita Scutaru, S. Vlase, M. Marin, Symmetrical Mechanical System Properties-Based Forced Vibration Analysis, Journal of Computational Applied Mechanics, pp. -, 2023.
[15] S. Vlase, M. Marin, M. Scutaru, I. R. Száva, Coupled transverse and torsional vibrations in a mechanical system with two identical beams, AIP Advances, Vol. 7, pp. 065301, 06/01, 2017.
[16] S. M. Abo-Dahab, A. E. Abouelregal, M. Marin, Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam, Symmetry, Vol. 12, No. 7, pp. 1094, 2020.
[17] S. Vlase, C. Năstac, M. Marin, M. Mihălcică, A method for the study of the vibration of mechanical bars systems with symmetries, ACTA TECHNICA NAPOCENSIS-Series: APPLIED MATHEMATICS, MECHANICS, and ENGINEERING, Vol. 60, No. 4, 2017.
[18] M. Hassan, M. I. Marin, R. Ellahi, S. Z. Alamri, EXPLORATION OF CONVECTIVE HEAT TRANSFER AND FLOW CHARACTERISTICS SYNTHESIS BY Cu–Ag/WATER HYBRID-NANOFLUIDS, Heat Transfer Research, Vol. 49, pp. 1837-1848, 2018.
[19] A. Zingoni, Symmetry recognition in group-theoretic computational schemes for complex structural systems, Computers & Structures, Vol. 94-95, pp. 34-44, 2012/03/01/, 2012.
[20] A. Zingoni, Group-theoretic exploitations of symmetry in computational solid and structural mechanics, International Journal for Numerical Methods in Engineering, Vol. 79, pp. 253-289, 07/16, 2009.
[21] M. Marin, A. Seadawy, S. Vlase, A. Chirila, On mixed problem in thermoelasticity of type III for Cosserat media, Journal of Taibah University for Science, Vol. 16, No. 1, pp. 1264-1274, 2022.
[22] A. Zingoni, Group-theoretic insights on the vibration of symmetric structures in engineering, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, Vol. 372, pp. 20120037, 02/13, 2014.
[23] T. PERNA, ROLE OF SYMMETRY IN OPTIMIZATION OF FEM SIMULATION CALCULATIONS, MM Science Journal, 2022.
[24] B. Dong, R. Parker, Modal properties of cyclically symmetric systems with central components vibrating as three-dimensional rigid bodies, Journal of Sound and Vibration, Vol. 435, 08/01, 2018.
[25] A. Zingoni, Group-theoretic vibration analysis of double-layer cable nets of D4h symmetry, International Journal of Solids and Structures, Vol. 176-177, pp. 68-85, 2019/11/30/, 2019.
[26] A. Zingoni, On the best choice of symmetry group for group-theoretic computational schemes in solid and structural mechanics, Computers & Structures, Vol. 223, pp. 106101, 10/01, 2019.
[27] D. Bartilson, J. Jang, A. Smyth, Symmetry properties of natural frequency and mode shape sensitivities in symmetric structures, Mechanical Systems and Signal Processing, Vol. 143, pp. 106797, 09/01, 2020.
[28] M. G. Fernández-Godino, S. Balachandar, R. Haftka, On the Use of Symmetries in Building Surrogate Models, Journal of Mechanical Design, Vol. 141, 11/20, 2018.
[29] D. Wang, C. Zhou, J. Rong, Free and forced vibration of repetitive structures, International Journal of Solids and Structures, Vol. 40, pp. 5477-5494, 10/01, 2003.
[30] C. Cai, F. Wu, On the vibration of rotational periodic structures, Acta Scientiarum Naturalium Universitatis Sunyatseni, Vol. 22, No. 3, pp. 1-9, 1983.
[31] C. W. Cai, Y. K. Cheung, H. C. Chan, Uncoupling of dynamic equations for periodic structures, Journal of Sound and Vibration, Vol. 139, No. 2, pp. 253-263, 1990/06/08/, 1990.
[32] H. C. Chan, C. Cai, Y. K. Cheung, 1998, Exact analysis of structures with periodicity using U-transformation, World Scientific,
[33] D. A. Evensen, Vibration analysis of multi-symmetric structures, AIAA Journal, Vol. 14, No. 4, pp. 446-453, 1976.
[34] D. Wang, C.-C. Wang, Natural vibrations of repetitive structures, Journal of Mechanics, Vol. 16, No. 2, pp. 85-95, 2000.
[35] W. Zhong, J. Lin, The eigen-value problem of the chain of identical substructures and the expansion method solution lasted on the eigen-vectors, Acta Mech. Sin, Vol. 23, pp. 72-81, 1991.
[36] L. Brillouin, 1946, Wave Propagation in Periodic Structures, Dover Publications, New York, USA
[37] D. Mead, A general theory of harmonic wave propagation in linear periodic systems with multiple coupling, Journal of Sound and Vibration, Vol. 27, No. 2, pp. 235-260, 1973.
[38] M. Marin, Some estimates on vibrations in thermoelasticity of dipolar bodies, Journal of Vibration and Control, Vol. 16, No. 1, pp. 33-47, 2010.
[39] D. Mead, A. Bansal, Mono-coupled periodic systems with a single disorder: Free wave propagation, Journal of Sound and Vibration, Vol. 61, No. 4, pp. 481-496, 1978.
[40] L. Gry, C. Gontier, DYNAMIC MODELLING OF RAILWAY TRACK: A PERIODIC MODEL BASED ON A GENERALIZED BEAM FORMULATION, Journal of Sound and Vibration, Vol. 199, No. 4, pp. 531-558, 1997/01/30/, 1997.
[41] L. Meirovitch, 2010, Methods of analytical dynamics, Courier Corporation,
[42] W. Zhong, F. W. Williams, On the direct solution of wave propagation for repetitive structures, Journal of Sound and Vibration, Vol. 181, pp. 485-501, 1995.
[43] A. Kaveh, K. Biabani Hamedani, A. Joudaki, M. Kamalinejad, Optimal analysis for optimal design of cyclic symmetric structures subject to frequency constraints, Structures, Vol. 33, pp. 3122-3136, 06/17, 2021.
[44] S. Vlase, M. Marin, M. L. Scutaru, C. Pruncu, Vibration Response of a Concrete Structure with Repetitive Parts Used in Civil Engineering, Mathematics, Vol. 9, No. 5, pp. 490, 2021.
[45] S. Vlase, P. Teodorescu, Elasto-dynamics of a solid with a general ‘rigid’motion using fem model. Part I. Theoretical approach, Rom. J. Phys, Vol. 58, No. 7-8, pp. 872-881, 2013.
[46] J. Zhang, E. Reynders, G. De Roeck, G. Lombaert, Model updating of periodic structures based on free wave characteristics, Journal of Sound and Vibration, Vol. 442, 11/01, 2018.
[47] L.-J. Wu, H.-W. Song, Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs), Acta Mechanica Sinica, Vol. 35, pp. 156-173, 2019.
[48] M. I. Othman, M. Fekry, M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech, Vol. 73, No. 6, pp. 621-629, 2020.
[49] A. Kaveh, A. Joudaki, Matrix Analysis of Repetitive Circulant Structures: New-block and Near Block Matrices, Periodica Polytechnica Civil Engineering, 05/28, 2019.
[50] R. Antoine, S. Hans, C. Boutin, Asymptotic analysis of high-frequency modulation in periodic systems. Analytical study of discrete and continuous structures, Journal of the Mechanics and Physics of Solids, Vol. 117, 04/01, 2018.
[51] S. Vlase, M. Marin, P. Bratu, O. A. O. SHRRAT, Analysis of Vibration Suppression in Multi-Degrees of Freedom Systems, Romanian Journal of Acoustics and Vibration, Vol. 19, No. 2, pp. 149-156, 2022.
[52] M. Marin, O. Florea, On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies, Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, Vol. 22, No. 1, pp. 169-188, 2014.
[53] A. Kaveh, A. Zolghadr, Optimal design of cyclically symmetric trusses with frequency constraints using cyclical parthenogenesis algorithm, Advances in Structural Engineering, Vol. 21, No. 5, pp. 739-755, 2018.
[54] L. Li, B. Cheng, Y. Zhang, H. Qin, Study of a smart platform based on backstepping control method, Earthquake Engineering and Engineering Vibration, Vol. 16, No. 3, pp. 599-608, 2017/07/01, 2017.
[55] Z. Ghemari, S. Belkhiri, Mechanical resonator sensor characteristics development for precise vibratory analysis, Sensing and Imaging, Vol. 22, No. 1, pp. 40, 2021.
[56] H. Çetin, G. G. Yaralioglu, Analysis of Vibratory Gyroscopes: Drive and Sense Mode Resonance Shift by Coriolis Force, IEEE Sensors Journal, Vol. 17, pp. 347-358, 2017.
[57] A. Z. Ter-Martirosyan, A. N. Shebunyaev, V. V. Sidorov, Mathematical Analysis of the Vibratory Pile Driving Rate, Axioms, Vol. 12, No. 7, pp. 629, 2023.
[58] I. Abbas, A. Hobiny, M. Marin, Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity, Journal of Taibah University for Science, Vol. 14, No. 1, pp. 1369-1376, 2020.
[59] M. Marin, On the minimum principle for dipolar materials with stretch, Nonlinear Analysis: Real World Applications, Vol. 10, No. 3, pp. 1572-1578, 2009.
[60] M. Rades, Mechanical vibrations II. Structural dynamic modeling, Rumania: University Politehnica Bucharest, pp. 354, 2010.
[61] Shock, V. I. Center, 1986, Shock and Vibration Monograph Series, Shock and Vibration Information Center.,
[62] D. Chen, J. Yang, S. Kitipornchai, Free and forced vibrations of shear deformable functionally graded porous beams, International Journal of Mechanical Sciences, Vol. 108-109, pp. 14-22, 2016/04/01/, 2016.