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Abstract 

Mechanical systems with structural symmetries present vibration properties 

that allow the calculation to be easier and the analysis time to decrease. The 

paper aims to use the properties involved by the symmetries that exist in 

mechanical systems for the analysis of the forced response to vibrations. 

Thus, the study of the properties of systems with symmetries or with 

identical parts is expanded. Based on a classic model, the characteristic 

properties that appear in this case are obtained and the advantages of using 

these properties are revealed. On an example consisting of a truck equipped 

with two identical engines, the way of applying these properties in the 

calculation and the resulting advantages is presented. 
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1. Introduction 

In many applications in the field of engineering, we encounter machines, devices, components that present 

different types of constructive symmetries. There are strong reasons why symmetries or repetitive parts are used in 

different mechanical systems or constructions, reasons related to ease of design, manufacturing or low logistics and 

maintenance costs. Last but not least, especially in the field of civil engineering, we also encounter aesthetic 

reasons. Symmetries have been observed for a long time by researchers and the properties they have been used 

especially in the static case. In the works [1, 2], different types of symmetries are presented and analyzed. A 

systematic study of the use of symmetries in mechanics was made by mathematicians [3-5], since they can be used 

beneficially in writing the equations of motion of some mechanical systems, but the results obtained are still of little 

interest to engineers. However, some engineering applications are studied in [6-9]. Symmetry magazine dedicated a 

special issue to this chapter in 2018 [10] and a project with this theme was financed within the FP5 European project 
competition [11]. The Center for Solid Mechanics in Udine organized special courses on this topic [12] (similarity, 

symmetry and group theoretical methods in mechanics). We mention that recently some interesting works have been 

published in the field [13] which present different ways of using the senses in order to facilitate the design and 

dynamic analysis of such systems. For the field of vibration study, there is a poorer literature, but we can still 

mention some works that present the way in which these properties can be used [14-21]. Observations in the sense of 

facilitating finite element method (FEM) modeling in case the studied structures present certain symmetries are 

made in [22]. Group theory is a favorite method for studying systems with symmetries to identify the highly 

structured modal properties of cyclic systems [23]. The determination of eigenvalues and eigenmodes is done by 

calculating them for the subsystems that define the symmetries. Obviously this is computationally efficient. 
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Symmetry groups are frequently used in such analyses [24, 25]. In [26] it is shown that the vibration modes of 

structures with symmetries are either symmetric or skew-symmetric, useful in the vibration analysis. A numerical 

example using FEM demonstrates the mentioned properties. Usually, simulations are expensive and different 

scenarios are analyzed in the design stage to determine the optimal solution from an engineering point of view. In 

[27] the advantages that symmetries can bring in the process of numerical simulation of some engineering projects 

are analyzed. A physical example to illustrate these advantages is presented in detail in the mentioned paper.  

The identical parts that constitutes the structure are identical if all the parameters that define it are the same. The 

geometric shape, physical properties, boundary conditions and liaisons must be identical for identical subassemblies. 

The most used method for studying the vibrations of such systems is the FEM, which however requires a 

considerable effort for modeling and discretization. The symmetry properties of a structure make the information 

necessary for the description of the structure less. Similarly, the stages of data pre-processing will thus be reduced 

and the costs will be lower. A number of properties of systems with repetitive elements have been studied with FEM 
in [28-33]. For continuous systems, the analysis of wave propagation in linear periodic systems was done in [34-38]. 

In [39, 40], some properties of discrete mechanical systems with repetitive elements are presented. Meirovitch 

[41]signaled, allusively, the existence of symmetries in vibrating mechanical systems and the possibility of using 

these symmetries to simplify the calculation. A first systematic approach to the problem can be found in [36-38] and 

further development is presented in [42]. New research in the field is presented in [43-54]. For problems with 

complex symmetries, a systematic study is not yet done. More results in domain were obtained by the researcher in 

the last decade [55-59]. 

The symmetries can lead to properties of the systems that allow the ease of dynamic analysis and the study of 

vibrations in these cases. The systems are characterized by the fact that they have identical geometry, properties, 

boundary conditions and liaisons with the main structure. They will present properties that allow the calculation and 

the necessary time to be eased and, as a consequence, the reduction of design time and costs.  
A field in which the existence of symmetries can lead to a significant decrease in the cost price is civil 

engineering. In this field, the existence of symmetries is also dictated by aesthetic considerations. In all engineering 

fields, such as the automotive industry, aerospace, equipment and machine manufacturing, there are products, 

elements or components with identical, repetitive parts or with different types of symmetries. 

In the paper we show that the existence of symmetries can lead to the disappearance of some terms of the forced 

vibration response of a mechanical system. This could cause the forced vibration amplitudes to decrease in these 

systems. 

 

2. Materials and Methods 

Let's consider a mechanical system with elastic elements that can be considered composed of two identical 

systems (S1) linked symmetrically to a third one called (S2).  
 

 
Figure 1. A mechanical system containing two identical subsystems 

 

If we denote by m1 the inertial matrix for the system (S1), m2 the inertial matrix for the system (S2), k1 the 

stiffness matrix of (S1), k2 the stiffness matrix of (S2), with f1 and f2 the excitations that act on the two systems, with 
k12 the stiffness matrix of the elastic liaison between the system (S1) and (S2), in the absence of damping, the 

equations of motion of the system are [60, 61]: 
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In the following it will be used  X for square matrices and  X for vectors. If we consider only the free 

vibration of the system Eq. (1) becomes: 
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If a harmonic solution of the form: 
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it is chosen for system (2) and the condition that Eq. (3) verifies the system of differential equations (2), the 
following condition is obtained: 
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which represents a linear homogeneous system. To have non-trivial solutions it is necessary that: 
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The Eq.(4) is the characteristic equations of the system (1) and the solutions   represent the undamped 

eigenfrequencies. If the number of degrees of freedom (DOF) is n, there exist n eigenfrequencies.  

For a real mechanical system studied in engineering the matrix  m  and  k  are real, positively definited, so the 

eigenvalues are real and positive. If exists rigid body modes, the corresponding eigenvalues are zero. 

From relation (3), it results that for every eigenfrequency   there is a eigenvector that satify the equation: 
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that represents the modal vector. For a system having n DOF there are n modal vectors. Considering two different 

modal vectors, indexed with r and s ( )sr   it exists the orthogonality of this two vectors through  m  and  k  

[55]: 
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If it is considered a mass normalization of the eigenmodes, so that if r=s, 
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Conditions (5) and (7) can be written together as: 
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where rs  is the Kronecker delta. 

In the following, we will note the normalized modes with: 
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The modal analysis uses the linear transformation: 
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where: 
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is the modal matrix. If it is denoted with: 
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the modal mass matix, with: 
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the modal stiffness and: 
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the modal force vector,. The system (1) becomes: 

 

       .FqKqM =+                                                           (18) 

 

If only the system (S1) is considered (see Fig.1.b), the motion equations are: 
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The free vibrations of the sstem are described by the system of differential equations: 
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In previous works, the authors demonstrated the following properties that mechanical systems with symmetries 

have and that can be used to analyze the free vibrations [14, 15, 17, 44, 62]. 

P1 – the eigenvalues for the subsystem (Sl) (see Eq.(20)) are between (included in) the eigenvalues for the 

system (S) (Eq.(2)).  

P2 - for the common eigenvalues of the system presented in Figure 1, a) and b) the eigenvectors have of the 
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(the components of the eigenmodes, corresponding to the two identical parts are skew symmetric, the other 

components are zero - we call these skewsymmetric eigenmodes). 

P3 - For the other eigenvalues, the eigenvectors have the form:  
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(the components of the eigenmodes corresponding to the two identical beams are the same- we call this symmetric 

eigenmodes).  

In Eq.(18) the matrix M and K are diagonal, so the system can be written:  
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For a system (S) subject to external excitation we have the following property: 

P4. For the eigenfrequebncy of the system (S1) (common with the eigenfrequencies of the entire system (S), the 

term ii MF /  is zero and the solution for the Eq.(33) corresponding to the common eigenfrequencies are the solution 

for the homogeneous system. 

In the situation of the property P2, the eigenmode is:    011  −=
 
and the Eq.(17) becomes: 
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So, the Eq.(25) becomes: 
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Here n1 is the number of the DOF of the system (S1) and n is the dimension of the entire system. There exists the 

relation 2n1 +n2 = n where n2 represents the number of DOF of the system (S2). 

The solution of the forced vibration is: 
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Discussion: It is observed that a number of n1 solutions of the forced vibrations are missing. This suggests that 

the general solution, having fewer excitation terms, could have a smaller total response amplitude. Obviously, a 

study and an argumentation of this observation can only be done on a concrete system, due to the large number of 

parameters that must be taken into account. The example from the paper shows us that this observation can be useful 

and can encourage the use of systems with repetitive parts in the design activity. We also have the following 

property: 
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(the excitation symmetry is kept in the response’s symmetry). 

 

Proof:   

Considering a harmonic p where the excitation is  pf , the amplitude of the forced vibrations is given by:  
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or, in other words: 

          ppp fxkxmpk 121211
22

1 =+−    ;                                        (32) 

 

          ppp fxkxmpk 121211
22

1 ' =+−    ;                                       (33) 

 

           ( )   ppp
T

p
T fxmpkxkxk 222

22
2112112 =−++      .                            (34) 
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It is obvious that (32) and (33) have identical solution (    pp xx 11 '= .□ 

 

3. Results 

The previously obtained properties are verified in the case of a truck, equipped with two identical engines. When 
moving the truck, one of the engines is used, then the equipment transported by the truck is used for drilling, where 
the power of both engines is used. This mobile drilling rig is built on the chassis of a truck that has the role of 
transporting the rig to the work site. The requirements imposed on these types of vehicles are complex, being 
subjected to high static and dynamic loads, with shocks and vibrations in operation, both in transport and in service. 
The propulsion system is ensured by two motors and the moment from the two motors is collected by means of a 
adding and distribution box. Usually, during transport, only one engine is used, and during the operation of the 
drilling rig, both engines are used. This ensures the necessary power for the drilling rig, as well as a stable service 
with high durability/reliability indices. 

The truck model with two identical engines is presented in Figure 2. 
 

 
 

Figure 2: The truck model with two identical engines 
 

 
 

Figure 3: The model for the study of one single engine 

 

For the entire system, the forced non-damped vibrations shall be described by the system of equations:   
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 The free non-damped vibration equations are: 
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where: 
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The inertial and stiffness parameters of the system are presented in Tables 1 and 2. 
 

Table 1: The inertia properties of the system 

No. Moment 
of inertia 

Detail Values 
[kgm2] 

1,7 J1 Cylinder 1 0.1048 

2,8 J2 Cylinder 2 0.0638 
3,9 J3 Cylinder 3 0.1048 

4,10 J4 Cylinder 4 0.1048 
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5,11 J5 Cylinder 5 0.0638 

6,12 J6 Cylinder 6 0.1048 
13,14,18 J7+ J8+J12 Gears and central gear 1.4157 

15,16 J9+ J10 Flywheel and ventilator 2.9841 

17 J11 Exit steering wheel 1.3382 
 

Table 2: The stiffness properties of the system 

No. Stiffness Values [Nm/rad] 

1 k1 2.56x106 

2 k2 2.56x106 

3 k3 2.53x106 

4 k4 2.56x106 

5 k5 2.56x106 
6 k6 20.87 x106 

7 k7 12.67 x106 

8 K8 0.045961 x106 
 
At a constant engine rotation, the movement of the crankshaft, connecting rod, piston and other moving parts of 

the engine is a periodic movement, with period T: 

,
2




=T with   ,

30

N
 =                                              (41) 

where N is the rotation speed of the engine considered into application. 

 
a)                                                        b)  

Figure 4: a) System with two engines;  b) System with one engine 
 
In order to be able to make the comparison, consider the system with two engines in operation and the system 

with one engine in operation (Fig. 4) and calculate the amplitudes of the forced vibrations for different harmonics of 
the exciting force. 

The moment given by each of the engines due to the pressure forces appearing in the cylinder is  
1
f  and the 

moment given by the forces resisting the wind and air resistance is given by  
2
f : 
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The excitation can be decomposed into Fourier series [63]: 
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 In numerical calculations, a reasonable number of terms is considered [64].  
If we take some term of the series, for example the k term: 
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and we are looking for a solution of the system of equations (1) of the form:  
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the linear system results: 
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If a single engine is working, the form of the solution is: 
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Obtaining the solutions can now be done numerically using the Matlab software. In Figs.4 and 5 are presented 

the amplitude of vibration of the wheels 1 to 9 for the two cases considered, with two engine working and with one 
engine working. 

 
 

 
 

Figure 5: The amplitudes of the flywheels for the 5th harmonic of the excitations  
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Figure 6: The amplitudes of the flywheels for the 5th harmonic of the excitations 
 
Figures 5 and 6 illustrate the previously presented properties. Thus, if only one engine is working on the machine 

under study (this happens during the transport of the machine), the amplitude of the forced oscillations of the 
flywheels is higher than the amplitude of the forced oscillations for the same flywheels, if both engines are working 
(during the service of the machine). The introduction of a symmetrical part in the system leads to the improvement 
of the forced vibration behavior for the studied case. 

 
4. Discussion and Conclusions 
In engineering practice, many buildings, halls, stadiums, stations, airports, etc. have identical parts in their 

composition and have different types of symmetry, as well as the various machines and devices that we use in our 
everyday life. It is a situation that we have encountered since the dawn of civilization and there are many reasons for 
this. An easier, faster, cheaper design, cheaper manufacturing and in a shorter time, reduced maintenance and 
logistics costs. Apart from the listed advantages, these symmetry properties can also be useful in the field of 
mechanical analysis of some structures. In the static field, some advantages in the calculation are described in the 
materials resistance manuals. In the field of dynamic analysis, however, until now these advantages have been less 
used. Even if FEM programmers intuitively use these properties to make their work easier, a description and a 
systematic study have been done less. The present work comes precisely to present the possibility of using these 
properties for the vibration calculation of structures.  

The paper demonstrates two properties that the existence of the symmetries of the equations of motion and 
finally the solutions of these equations of motion provide. Thus, for certain modes of movement, the existence of 
these symmetries can determine the balance of the excitation forces that act, and as a result, the load on the entire 
system is reduced. This suggested that the amplitude of the forced vibrations could also be reduced. An example 
shows us that this assumption is correct. 

The work suggests the possibility that the existence of symmetries in a mechanical system can lead to the 
improvement of its properties from the point of view of behavior to external excitations. Of course, a much wider 
study of this observation, on real systems, where the number of parameters is low enough to obtain results, is 
required. A possibility of applicability of this observation can be in the field of civil engineering. 
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