Performance Study of Partially Heated Annulus Filled with Two-Phase Nanofluid: Energy Perspective

Document Type : Research Paper


1 Department of Mechanical Engineering, Yasouj University, Yasouj, Iran.

2 Department of Mechanical Engineering, Naragh Branch, Islamic Azad University, Naragh, Iran

3 islamic azad university badroud branch


In recent years, electrical appliances have become an integral part of human life, and efforts have been made to improve the quality and durability of electrical boards. One of the ways to improve the life of electrical boards is using cooling methods suitable for transferring the heat generated by the boards. In this paper, three different models of Case 1, Case 2, and Case 3 have been analyzed to provide an optimal model with the highest average Nusselt number. To achieve the optimal model the effect of heat source, the characteristics of hot and cold barriers and their locations on the flow field, heat transfer between two horizontal concentric cylinders with the presence of nanofluids were investigated. The results have shown that for all volume fractions, the Nusselt number increases with rising Riley number, as well as for the inner and outer cylinder, the value of the average Nusselt number increases at a constant Riley number with rising the volume fraction from 0 to 0.8%. Therefore, the highest Nusselt number occurs in volume fraction of 0.8% and Riley number of 〖10〗^5.


Main Subjects

[1]          J. A. Eastman, U. Choi, S. Li, L. Thompson, S. J. M. O. P. L. Lee, Enhanced thermal conductivity through the development of nanofluids, Vol. 457, pp. 3, 1996.
[2]          O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J. S. Marshall, M. Siavashi, R. A. Taylor, H. J. P. r. Niazmand, Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory, Vol. 790, pp. 1-48, 2019.
[3]          N. Kumar, A. J. O.-E. R. Srivastava, Enhancement in NBE emission and optical band gap by Al doping in nanocrystalline ZnO thin films, Vol. 26, No. 1, pp. 1-10, 2018.
[4]          E. Ebrahimnia-Bajestan, M. Charjouei Moghadam, H. Niazmand, W. Daungthongsuk, S. Wongwises, Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers, International Journal of Heat and Mass Transfer, Vol. 92, pp. 1041-1052, 2016/01/01/, 2016.
[5]          F. J. H. T. A. R. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Vol. 48, No. 1, pp. 135-147, 2019.
[6]          T. Tayebi, A. J. J. N. H. T. Chamkha, Part A: Applications, Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids, Vol. 70, No. 10, pp. 1141-1156, 2016.
[7]          M. Sheikholeslami, R. Ellahi, C. J. M. P. i. E. Fetecau, CuO–Water nanofluid magnetohydrodynamic natural convection inside a sinusoidal annulus in presence of melting heat transfer, Vol. 2017, 2017.
[8]          M. Sheikholeslami, Z. Ziabakhsh, D. J. C. Ganji, S. A. Physicochemical, E. Aspects, Transport of Magnetohydrodynamic nanofluid in a porous media, Vol. 520, pp. 201-212, 2017.
[9]          H. Dawood, H. Mohammed, K. J. C. S. i. T. E. Munisamy, Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition, Vol. 4, pp. 32-41, 2014.
[10]        J. P. Dulhani, S. Sarkar, A. J. I. J. o. H. Dalal, M. Transfer, Effect of angle of incidence on mixed convective wake dynamics and heat transfer past a square cylinder in cross flow at Re= 100, Vol. 74, pp. 319-332, 2014.
[11]        A. Dhiman, R. Chhabra, V. J. I. J. o. H. Eswaran, M. Transfer, Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number, Vol. 48, No. 21-22, pp. 4598-4614, 2005.
[12]        V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, S. J. I. J. o. H. Wongwises, M. Transfer, Unconfined laminar nanofluid flow and heat transfer around a square cylinder, Vol. 55, No. 5-6, pp. 1475-1485, 2012.
[13]        C.-C. Wang, C.-K. J. I. J. o. H. Chen, M. Transfer, Forced convection in a wavy-wall channel, Vol. 45, No. 12, pp. 2587-2595, 2002.
[14]        J. Yin, G. Yang, Y. J. E. P. Li, The effects of wavy plate phase shift on flow and heat transfer characteristics in corrugated channel, Vol. 14, pp. 1566-1573, 2012.
[15]        L. Zhang, D. J. N. H. T. Che, Part A: Applications, Turbulence models for fluid flow and heat transfer between cross-corrugated plates, Vol. 60, No. 5, pp. 410-440, 2011.
[16]        S. Z. Heris, M. N. Esfahany, G. J. N. H. T. Etemad, Part A: Applications, Numerical investigation of nanofluid laminar convective heat transfer through a circular tube, Vol. 52, No. 11, pp. 1043-1058, 2007.
[17]        S. Sadripour, A. J. J. T. S. Chamkha, E. Progress, The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector, Vol. 9, pp. 266-280, 2019.
[18]        A. A. A. Arani, S. Sadripour, S. J. I. J. o. M. S. Kermani, Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength, Vol. 128, pp. 550-563, 2017.
[19]        T. H. Kuehn, R. J. J. I. J. o. H. Goldstein, M. Transfer, Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder, Vol. 23, No. 7, pp. 971-979, 1980.
Volume 55, Issue 1
January 2024
Pages 39-50
  • Receive Date: 23 September 2023
  • Revise Date: 04 October 2023
  • Accept Date: 04 October 2023