[1] D. Chen, J. Yang, S. Kitipornchai, Free and forced vibrations of shear deformable functionally graded porous beams, International Journal of Mechanical Sciences, Vol. 108-109, pp. 14-22, 2016/04/01/, 2016.
[2] R. Tantawy, A. M. Zenkour, Effect of Porosity and Hygrothermal Environment on FGP Hollow Spheres under Electromechanical Loads, Journal of Applied and Computational Mechanics, Vol. 8, No. 2, pp. 710-722, 2022.
[3] M. Saadatfar, M. Zarandi, M. Babaelahi, Effects of porosity, profile of thickness, and angular acceleration on the magneto-electro-elastic behavior of a porous FGMEE rotating disc placed in a constant magnetic field, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 7, pp. 1241-1257, 2021.
[4] K. Gao, Y.-L. Lei, J. Yang, Dynamic characteristics of functionally graded porous beams with interval material properties, Engineering Structures, Vol. 197, 07/25, 2019.
[5] R. Tantawy, A. Zenkour, Effects of Porosity, Rotation, Thermomagnetic, and Thickness Variation on Functionally Graded Tapered Annular Disks, 2023.
[6] K. Gao, W. Gao, B. Wu, D. Wu, C. Song, Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales, Thin-Walled Structures, Vol. 125, pp. 281-293, 04/01, 2018.
[7] M. Sobhy, A. M. Zenkour, Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory, Waves in Random and Complex Media, Vol. 31, No. 5, pp. 921-941, 2021.
[8] R. Tantawy, A. M. Zenkour, Even and Uneven Porosities on Rotating Functionally Graded Variable-thickness Annular Disks with Magneto-electro-thermo-mechanical Loadings, Journal of Applied and Computational Mechanics, Vol. 9, No. 3, pp. 695-711, 2023.
[9] H. Wu, J. Yang, S. Kitipornchai, Mechanical Analysis of Functionally Graded Porous Structures: A Review, International Journal of Structural Stability and Dynamics, Vol. 20, No. 13, pp. 2041015, 2020.
[10] R. Tantawy, Magneto-Electric Influence on a Functionally Graded Porous Hollow Structure in Hygrothermal Environment, Scientific Journal for Damietta Faculty of Science, Vol. 12, pp. 183-200, 12/01, 2022.
[11] H. Norouzi, A. Alibeigloo, Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differential quadrature method, European Journal of Mechanics - A/Solids, Vol. 61, pp. 254-266, 2017/01/01/, 2017.
[12] M. Allam, R. Tantawy, A. Yousof, A. Zenkour, Elastic and Viscoelastic Stresses of Nonlinear Rotating Functionally Graded Solid and Annular Disks with Gradually Varying Thickness, Archive of Mechanical Engineering, Vol. 64, 12/20, 2017.
[13] E. V. Dave, W. G. Buttlar, G. H. Paulino, H. H. Hilton, Graded viscoelastic approach for modeling asphalt concrete pavements, in Proceeding of, American Institute of Physics, pp. 736-741.
[14] S.-E. Kim, N. D. Duc, V. H. Nam, N. Van Sy, Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment, Thin-Walled Structures, Vol. 142, pp. 287-296, 2019/09/01/, 2019.
[15] Z. Q. Cheng, S. A. Meguid, Z. Zhong, Thermo-mechanical behavior of a viscoelastic FGMs coating containing an interface crack, International Journal of Fracture, Vol. 164, No. 1, pp. 15-29, 2010/07/01, 2010.
[16] J. G. Yu, F. E. Ratolojanahary, J. E. Lefebvre, Guided waves in functionally graded viscoelastic plates, Composite Structures, Vol. 93, No. 11, pp. 2671-2677, 2011/10/01/, 2011.
[17] M. N. M. Allam, R. Tantawy, Thermomagnetic viscoelastic responses in a functionally graded hollow structure, Acta Mechanica Sinica, Vol. 27, No. 4, pp. 567-577, 2011/08/01, 2011.
[18] A. M. Dehrouyeh-Semnani, M. Dehrouyeh, M. Torabi-Kafshgari, M. Nikkhah-Bahrami, An investigation into size-dependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams, International Journal of Engineering Science, Vol. 96, pp. 68-85, 2015/11/01/, 2015.
[19] J. Deng, Y. Liu, Z. Zhang, W. Liu, Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method, European Journal of Mechanics - A/Solids, Vol. 65, pp. 257-270, 2017/09/01/, 2017.
[20] A. H. Sofiyev, On the solution of the dynamic stability of heterogeneous orthotropic visco-elastic cylindrical shells, Composite Structures, Vol. 206, pp. 124-130, 2018/12/15/, 2018.
[21] Y. Q. Mao, Y. M. Fu, H. L. Dai, Creep buckling and post-buckling analysis of the laminated piezoelectric viscoelastic functionally graded plates, European Journal of Mechanics - A/Solids, Vol. 30, No. 4, pp. 547-558, 2011/07/01/, 2011.
[22] M. H. Jalaei, Ӧ. Civalek, On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, International Journal of Engineering Science, Vol. 143, pp. 14-32, 2019/10/01/, 2019.
[23] A. Ebrahimi-Mamaghani, A. Forooghi, H. Sarparast, A. Alibeigloo, M. Friswell, Vibration of Viscoelastic Axially Graded Beams with Simultaneous Axial and Spinning Motions under an Axial Load, Applied Mathematical Modelling, Vol. 90, 09/23, 2020.
[24] S. Coskun, J. Kim, H. Toutanji, Bending, Free Vibration, and Buckling Analysis of Functionally Graded Porous Micro-Plates Using a General Third-Order Plate Theory, Journal of Composites Science, Vol. 3, pp. 15, 02/01, 2019.
[25] A. A. Daikh, A. M. Zenkour, Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory, Materials Research Express, Vol. 6, No. 11, pp. 115707, 2019/10/11, 2019.
[26] A. M. Zenkour, A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Composite Structures, Vol. 201, pp. 38-48, 2018/10/01/, 2018.
[27] A. M. Zenkour, Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses, Physical Mesomechanics, Vol. 23, No. 1, pp. 39-53, 2020/01/01, 2020.
[28] Q. Li, D. Wu, X. Chen, L. Liu, Y. Yu, W. Gao, Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation, International Journal of Mechanical Sciences, Vol. 148, 09/01, 2018.
[29] S. Sahmani, M. Aghdam, T. Rabczuk, Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs, Composite Structures, Vol. 198, 05/01, 2018.
[30] M. Slimane, A. Hadj Mostefa, Y. Beldjelili, M. Merazi, S. Boutaleb, H. Hellal, Analytical solution for statif bending analyses of functionally grades plates with porosities, Frattura ed Integrità Strutturale, Vol. 55, 01/01, 2021.
[31] A. Zenkour, M. Aljadani, Quasi-3D Refined Theory for Functionally Graded Porous Plates: Vibration Analysis, Physical Mesomechanics, Vol. 24, pp. 243-256, 03/01, 2021.
[32] A. Zenkour, M. Aljadani, Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates, European Journal of Mechanics - A/Solids, Vol. 78, pp. 103835, 08/01, 2019.
[33] Y. Ootao, Y. Tanigawa, Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere, Composite Structures, Vol. 81, No. 4, pp. 540-549, 2007/12/01/, 2007.
[34] A. Ghorbanpour Arani, R. Kolahchi, A. A. Mosallaie Barzoki, A. Loghman, Electro-thermo-mechanical behaviors of FGPM spheres using analytical method and ANSYS software, Applied Mathematical Modelling, Vol. 36, No. 1, pp. 139-157, 2012/01/01/, 2012.
[35] M. Allam, R. Tantawy, A. Zenkour, Thermoelastic stresses in functionally graded rotating annular disks with variable thickness, Journal of Theoretical and Applied Mechanics (Poland), Vol. 56, pp. 1029-1041, 10/20, 2018.
[36] M. Bayat, M. Rahimi, M. Saleem, A. H. Mohazzab, I. Wudtke, H. Talebi, One-dimensional analysis for magneto-thermo-mechanical response in a functionally graded annular variable-thickness rotating disk, Applied Mathematical Modelling, Vol. 38, No. 19, pp. 4625-4639, 2014/10/01/, 2014.
[37] G. Paria, Magneto-Elasticity and Magneto-Thermo-Elasticity, in: G. G. Chernyi, P. Germain, L. Howarth, W. Olszak, W. Prager, R. F. Probstein, H. Ziegler, Advances in Applied Mechanics, Eds., pp. 73-112: Elsevier, 1966.
[38] M. Rouhi, A. Angoshtari, R. Naghdabadi, Thermoelastic analysis of thick-walled finite-length cylinders of functionally graded materials, Journal of Thermal Stresses - J THERMAL STRESSES, Vol. 28, pp. 391-408, 03/23, 2005.
[39] J. N. Reddy, C. M. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics - A/Solids, Vol. 18, No. 2, pp. 185-199, 1999/03/01/, 1999.
[40] B. E. P. M.N.M. Allam, on the solution of quasi-statical problems of anisotropic viscoelasticity, Isvestia Akademy Nauk, AR-SSR Mekhanika, , Vol. 31, pp. 19-27, 1976
[41] B. E. P. A.A. Illyushin, Foundation of mathematical theory of thermo viscoelasticity, Nauka, Moscow, 1970