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Abstract 

The analysis of the bending behavior of rotating porous disks with exponential thickness 

variation consisting of viscoelastic functionally graded material is illustrated. The study of 

bending in the porous disk was done using the first-order shear deformation theory. The 

porous disk is under the effect of a combination of mechanical stresses and thermal 

distribution. All material factors for the porous disk change across the thickness as a 

power law of radius. To solve the mathematical structure by using the semi-analytical 

technique for displacements in the porous disk, and then to treat the structure model with 

viscoelastic material by the correspondence principle and Illyushin’s approximation 

manner. Numerical outcomes including the effect of porosity parameter, inhomogeneity 

factor, and relaxation time are presented with three different sets of boundary conditions 

for the solid and hollow disks. A comparison between porous and perfect disk with 

numerous values of porosity parameters and different inhomogeneity factors have been 

shown to emphasize the importance of complex mathematical structure in modern 

engineering mechanical designs. 
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1. Introduction 

The development of the industry day after day increases the need to develop composite materials and enhance their properties.  

It was therefore necessary to develop new materials with graded properties to meet the requirements of engineering designs and 

applications. Most modern industrial applications in the automotive, aerospace, missiles, and mobile phones require a material that 

changes gradually in certain directions. Therefore, functionally graded materials (FGM) were designed for the first time in the 

Japanese Space Shuttle project in 1983. With the development of industry, the porosity feature appeared in functionally graded 

materials, which recently have been widely used in the fields of bioengineering, electronic equipment, and other fields.  

Chen et al. [1] studied the irregular porosity distribution and vibration properties of FG porous beams. Tantawy and Zenkour 

[2] investigated the influence of porosity on FG piezoelectric hollow spheres with electrical and mechanical loads in a hygrothermal 

environment. Saadatfar et al. [3] considered a mathematical model of a porous disc to study its free vibration. Many studies have 

been presented to study the porosity property in gradient materials, for example [4-10]. 
Functionally graded viscoelastic materials can be counted as one of the newest materials of the gradient family of materials.  

Due to the originality of the gradient viscoelastic materials, they have attracted many researchers to study their properties. Norouzi 

et al. [11] examined the analysis of FG viscoelastic cylindrical panels. Allam et al. [12] discussed numerical and analytical solutions 

for FG viscoelastic annular and solid disks by successive approximations technique. Dave et al. [13] offered an FG viscoelastic 

model to examine the asphalt responses affected by mechanical load and thermal distribution. Kim et al. [14] investigated the semi-

analytical solution for a nonlinear FG viscoelastic plate for dynamic and vibration response. Other studies and research have 

appeared in [15-23]. 

Many researchers began to explore the bending and vibration of porous panels made from a gradient material. The distribution 

of the porous has a significant effect on the plate's dynamics. From this research, Coskun et al. [24] use the third-order plate theory 

to study the vibration and buckling of FG porous plates. The same theory was also used to examine the effectiveness of porosity 

and inhomogeneity on FG porous sandwiches by Daikh and Zenkour [25]. The theory is deduced by Zenkour [26, 27] to solve the 
problems of the 3D FG porous plates problems that are single-layer, piezoelectric, and sandwich plates. Additional research and 

studies have appeared in [28-32]. 
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Theoretical and numerical studies of the thermomechanical effect on the viscoelastic FG rotating solid and hollow disk with 

exponentially variable thickness are presented. Using the first-order shear deformation theory we can study the bending acting on 

the viscoelastic porous disk. Thermal and mechanical coefficients are pretended to be graded along the thickness as a power law 

in radius by taking into consideration the inhomogeneity factor and porosity parameter. As a first step, using the semi-analytical 

method, the governing differential equation is solved. In the second step, the correspondence principle with Illyushin’s 

approximation technique is exploited to solve the viscoelastic porous disk. The numerical outcomes are gained for three different 

sets of solid and hollow disks. The outcomes numerical results are compared and the influence of different parameters affecting 

the disk is discussed. 

2. Nomenclature 

𝑎  internal radii of the disk [m] 
𝑏  external radii of the disk [m] 
𝐸  Young’s modulus [GPa] 
𝜈  Poisson’s ratio 

𝐻(𝑡)  Heaviside unit step function 

ℎ0  thickness of the center of disk [m] 
𝐾𝑇   coefficient of heat conductivity [W/K m] 
𝑛  inhomogeneity factor 

𝜔  angular velocity 

𝑠(𝑘)  radial width of the kth subsection [m] 
𝑞𝑧  perpendicular pressure [Pa] 
𝑇0   reference temperature  [K] 
α  thermal expansion factor [K−1] 
𝛽  porosity parameter 

𝑁𝑟 , 𝑁𝜃  non-dimensional forces per unit length 

𝑀𝑟 ,𝑀𝜃  non-dimensional moments per unit length 

ℎ(𝑟)  thickness changing [m] 
𝑄𝑟  non-dimensional transeverse shear resultant 

𝑙, 𝑘  profile characteristic 

𝑟(𝑘)  the mean radius of the kth subsection [m] 
𝑇1   temperature on external radii  [K] 
𝜌  density [kg m−3] 
𝑝(𝑎)  properties of internal surface 

𝑝(𝑏)  internal radii of the disk [m] 

3. Geometric shape of the porous graded disk 

Consider graded viscoelastic porous disk with variable thickness ℎ(𝑟), internal radii 𝑎, external radii 𝑏. The disk orbits about 

the 𝑧-axis with angular speed 𝜔. The disk is exposed to transverse loading 𝑞𝑧(𝑟), thermal distribution 𝑇(𝑟) and mechanical 

loading. According to the geometric disk profile, the cylindrical coordinate (𝑟, 𝜃, 𝑧) are used. The physical material coefficients 
are graded from PZT-4 to Cadmium Selenide as presented in Table 1. 

 
Table 1. Thermal and mechanical coefficients of porous disk materials. 

PZT-4 (Ootao and Tanigawa [33]) Cadmium selenide (Arani et al.[34]) 

𝐸(𝑎) = 84(GPa) 𝐸(𝑏) = 50(GPa) 

𝜈(𝑎) = 0.31 𝜈(𝑏) = 0.35 

𝐾T
(𝑎)
= 110 (WK−1m−1) 𝐾T

(𝑏)
= 4 (WK−1m−1) 

𝛼𝑟
(𝑎)
= 2 × 10−5 (K−1) 𝛼𝑟

(𝑏)
= 2.458 × 10−6 (K−1) 

𝜌(𝑎) = 7500(kg m−3) 𝜌(𝑏) = 5684(kg m−3) 

3.1 Thickness modulation description 

The thickness variation of the exponentially viscoelastic porous disk has a mathematical formulation [35, 36].  

ℎ(𝑟) = ℎ0e
−𝑙(

𝑟

𝑏
)
𝑘

, (1) 

where ℎ0 is the thickness of the disk center and 𝑙, 𝑘 are geometric coefficients that define the thickness of the edge and shape 

of the disk profiles 
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Fig. 1. Exponential viscoelastic porous disk thickness description 

(a) 𝒍 = 𝟎. 𝟒𝟓𝟔𝟖, 𝒌 = 𝟑, (b) 𝒍 = 𝟐, 𝒌 = 𝟎. 𝟕, and (c) 𝒍 = 𝟐, 𝒌 = 𝟏. 4. 

3.2 Porosity gradient of exponential porous disks  

In this research, we postulate that the thermal and mechanical coefficients of the disk difference in the direction of the radius 

by a power function on the mathematical formula p(r) as 

𝑝(𝑟) = (𝑝(𝑏) − 𝑝(𝑎)) (
𝑟−𝑎

𝑏−𝑎
)
𝑛

+ 𝑝(𝑎) −
𝛽

2
(𝑝(𝑏) + 𝑝(𝑎)), (2) 

where 𝑝(𝑎)  and 𝑝(𝑏)  are internal and external properties surfaces, 𝑛 ≥ 0  is the inhomogeneity factor and 0 ≤ 𝛽 ≤ 1  is the 

porosity parameter when 𝛽 = 0 means non-porous (perfect) disk. 

3.3 Thermal equation  

The thermal equation for gradient porous disk is given by the equation [37] 

1

𝑟ℎ(𝑟)

d

d𝑟
(𝑟 𝑘𝑇  ℎ(𝑟)

d𝑇(𝑟)

d𝑟
) = 0, (3) 

where 𝑘𝑇  is the coefficient of heat conductivity and satisfies the gradient relationship (2). 

Thermal boundary conditions for the gradient porous disk 

𝑇(𝑟)|𝑟=𝑎 = 𝑇0 ,   𝑇(𝑟)|𝑟=𝑏 = 𝑇1 , (4) 

where 𝑇0  is reference temperature and 𝑇1 is the temperature on external radii. 

3.4 Basic equilibrium differential equations 

The governing equations for a rotating graduated porous disk of changing thickness using first-order shear deformation theory, 

which imposes that the transverse shear component remains not equal to zero, and its value is specified and constant throughout 

the disk thickness, and displacement components are imposed in the form 

𝑢𝑟(𝑟, 𝑧) = 𝑢0 + 𝑧𝜓,   𝑢𝜃 = 0,   𝑢𝑧(𝑟, 𝑧) = 𝑤. (5) 

The strain components are given through the mathematical relationships [38] 
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ε𝑟 =
𝜕𝑢𝑟

𝜕𝑟
=

d𝑢0

d𝑟
+ 𝑧

d𝜓

d𝑟

𝜀𝜃 =
𝑢𝑟

𝑟
=

𝑢0

𝑟
+ 𝑧

𝜓

𝑟

𝛾𝑟𝑧 = 2𝜀𝑟𝑧 =
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
= 𝜓 +

d𝑤

d𝑟

𝛾𝑟𝜃 = 2𝜀𝑟𝜃 = 0, 𝛾𝜃𝑧 = 2𝜀𝜃𝑧 = 0, 𝜀𝑧 =
𝜕𝑢𝑧

𝜕𝑧
= 0}

  
 

  
 

  (6) 

The constitutive equations of the porous disk are defined as  

σ𝑟 =
𝐸

1−𝜈2
ε𝑟 +

𝐸𝜈

1−𝜈2
𝜀𝜃 −

𝐸

1−𝜈
𝛼𝑇

𝜎𝜃 =
𝐸

1−𝜈2
𝜀𝜃 +

𝐸𝜈

1−𝜈2
ε𝑟 −

𝐸

1−𝜈
𝛼𝑇

𝜎𝑟𝑧 =
𝐸

2(1+𝜈)
𝛾𝑟𝑧 }

 
 

 
 

  (7) 

To study the equilibrium in the porous disk, if 𝐸𝜀 is the overall strain energy of porous disk and 𝐸𝑤 is overall external 

work on a porous disk. From it, the total energy 𝐸 can be deduced in the form 𝐸 ≡ 𝐸𝜀 −𝐸𝑤 , where 

𝐸𝜀 = ∫ 𝜎𝑖𝑗𝜀𝑖𝑗d𝑉𝑉
= ∫ ∫ 2𝜋(𝜎𝑟𝜀𝑟 + 𝜎𝜃𝜀𝜃 + 𝜎𝑟𝑧𝛾𝑟𝑧)𝑟d𝑧d𝑟

ℎ(𝑟)

2

−
ℎ(𝑟)

2

𝑏

𝑎

𝐸𝑤 = −∫ ∫ 2𝜋𝜌(𝑟)𝑟2𝜔2𝑢𝑟d𝑧d𝑟
ℎ(𝑟)

2

−
ℎ(𝑟)

2

𝑏

𝑎
− ∫ 2𝜋𝑟𝑞𝑧(𝑟)𝑢𝑧d𝑟

𝑏

𝑎 }
 
 

 
 

  (8) 

here 𝑞𝑧(𝑟) is the perpendicular pressure on a porous disk surface. From the principle of lower total energy 𝛿𝐸 = 0 

∫ {(𝑁𝜃 −
d(𝑟𝑁𝑟)

d𝑟
− 𝜌1𝑟

2𝜔2)𝛿𝑢0 + (𝑀𝜃 + 𝑟𝑄𝑟 −
d(𝑟𝑀𝑟)

d𝑟
) 𝛿𝜓− (

d(𝑟𝑄𝑟)

d𝑟
+ 𝑟𝑞𝑧)𝛿𝑤}d𝑟

𝑏

𝑎
= 0, (9) 

where 𝑁𝑟, 𝑁𝜃, 𝑀𝑟, 𝑀𝜃, 𝑄𝑟 and 𝜌1 are functions of 𝑟 as 

(𝑁𝑟 , 𝑁𝜃 , 𝑄𝑟 ) = ∫ (𝜎𝑟 , 𝜎𝜃 , 𝜎𝑟𝑧)d𝑧
ℎ(𝑟)

2

−
ℎ(𝑟)

2

(𝑀𝑟 ,𝑀𝜃) = ∫ (𝜎𝑟 , 𝜎𝜃)z𝑑𝑧
ℎ(𝑟)

2

−
ℎ(𝑟)

2

𝜌1 = ∫ 𝜌(𝑟)d𝑧
ℎ(𝑟)

2

−
ℎ(𝑟)

2

= ℎ(𝑟)𝜌(𝑟)
}
 
 
 

 
 
 

     (10) 

where 𝑁𝑟 ,𝑁𝜃 and 𝑀𝑟 ,𝑀𝜃 are forces and moments, respectively, for unit length; 𝑄𝑟 is transverse shear for the porous disk. 

From Eq. (9) yields 

−
𝑑(𝑟𝑁𝑟)

𝑑𝑟
+ 𝑁𝜃 − 𝜌1𝑟

2𝜔2 = 0

−
𝑑(𝑟𝑀𝑟)

𝑑𝑟
+𝑀𝜃 + 𝑟𝑄𝑟 = 0

𝑑(𝑟𝑄𝑟)

𝑑𝑟
+ 𝑟𝑞𝑧 = 0 }

 
 

 
 

      (11) 

Substituting from Eqs. (7) into Eqs. (10) we get 

𝑁𝑟 =
ℎ𝐸

(1−𝜈2)
[
𝑑𝑢0

𝑑𝑟
+ 𝜈

𝑢0

𝑟
− (1 + 𝜈)𝛼𝑇]

𝑁𝜃 =
ℎ𝐸

(1−𝜈2)
[𝜈

𝑑𝑢0

𝑑𝑟
+

𝑢0

𝑟
− (1 + 𝜈)𝛼𝑇]

𝑀𝑟 =
ℎ3𝐸

12(1−𝜈2)
[
𝑑𝜓

𝑑𝑟
+ 𝜈

𝜓

𝑟
]

𝑀𝜃 =
ℎ3𝐸

12(1−𝜈2)
[𝜈

𝑑𝜓

𝑑𝑟
+

𝜓

𝑟
]

𝑄𝑟 =
ℎ𝐸

2(1+𝜈)
𝑘𝑠 [𝜓 +

𝑑𝑤

𝑑𝑟
] }

 
 
 
 

 
 
 
 

   (12) 

here 𝑘𝑠 is a shear-correction parameter. Considering that 𝐸, 𝜈, 𝜌, and 𝛼 are functions of the radius according to the gradient 

relation (2). By substituting Eqs. (12) into Eqs. (11), a system of differential equations is produced. By solving them, we can obtain 

the displacement components 

𝑟ℎ𝐸
d2𝑢0

d𝑟2
+ (

d(𝑟ℎ𝐸)

d𝑟
+

2𝑟ℎ𝐸𝜈

(1−𝜈2)

d𝜈

d𝑟
)
𝑑𝑢0

𝑑𝑟
+ (

𝜈

𝑟

d(𝑟ℎ𝐸)

d𝑟
+ 𝑟ℎ𝐸 (1 +

2𝜈2

𝑟(1−𝜈2)

𝑑𝜈

𝑑𝑟
−

ℎ𝐸(1+𝜈)

𝑟
))𝑢0  

+𝜌𝑟2𝜔2ℎ(1 − 𝜈2) − 𝑟(1 + 𝜈)
d(ℎ𝐸𝛼𝑇)

d𝑟
= 0,  

(13) 
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𝑟ℎ𝐸
d2𝜓

d𝑟2
+ (

1

ℎ2

d(𝑟ℎ3𝐸)

d𝑟
+

2𝑟ℎ𝐸𝜈

(1−𝜈2)

d𝜈

d𝑟
)
d𝜓

d𝑟
+

6(𝜈−1)𝐸𝑟𝑘𝑠

ℎ

d𝑤

d𝑟
  

+(
𝜈

𝑟ℎ2

d(𝑟ℎ3𝐸)

d𝑟
+ ℎ𝐸 (1+

2𝜈2

1−𝜈2
)
d𝜈

d𝑟
−

ℎ𝐸(𝜈+1)

𝑟
+

6(𝜈−1)𝐸𝑟𝑘𝑠

ℎ
)𝜓 = 0,  

𝑟ℎ𝐸 (
d2𝑤

d𝑟2
+

d𝜓

d𝑟
) + (

d(𝑟ℎ𝐸)

d𝑟
−

𝑟ℎ𝐸

1+𝜈

d𝜈

d𝑟
) (

d𝑤

d𝑟
+𝜓)+

2𝑟𝑞𝑧(1+𝜐)

𝑘𝑠
= 0.  

To explain the influence of inhomogeneity and porosity on bending porous disk by changing thickness, we impose three different 

classes of boundary conditions on the porous disk [39] 

Status 1: Circular solid porous disk 

at 𝑟 = 0      𝑢0 = 0, 𝜓 = 0, 𝑄𝑟 = 0,
at 𝑟 = 𝑏      𝑤 = 0, 𝑁𝑟 = 0, 𝑀𝑟 = 0.

} (14) 

Status 2: Mounted free hollow porous disk 

at 𝑟 = 𝑎      𝑢0 = 0, 𝜓 = 0, 𝑤 = 0,
at 𝑟 = 𝑏      𝑄𝑟 = 0, 𝑁𝑟 = 0, 𝑀𝑟 = 0.

}  (15) 

Status 3: Mounted hollow supported cased porous disk 

𝑎𝑡 𝑟 = 𝑎      𝑢0 = 0, 𝜓 = 0, 𝑤 = 0,
𝑎𝑡 𝑟 = 𝑏      𝑤 = 0, 𝑁𝑟 = 0, 𝑀𝑟 = 0.

} (16) 

4. Elastic solution for gradient porous disk 

Obtaining the analytical mathematical solution for the thermal differential equation (3) and the system of differential equations 

(13) with the aid of the thickness equation (1) and the equation for the gradient of properties and porosity (2) is not easy, but rather 

very difficult. This is because the displacements in the system of differential equations (13) as well as the thermal equation (3) are 

considered functions of the radius 𝑟. Using the semi-analytical method to solve the system of equations, where the radial range 

from 𝑟 = 𝑎  to 𝑟 = 𝑏  is divided into several subsections, each of which has a thickness 𝑠(𝑘)  and an average radius of each 

subsection, 𝑟(𝑘) , as shown in Fig. 2. By referring to thermal equation (3) and the system of differential equations (13) and 

calculating the coefficients at 𝑟 = 𝑟(𝑘), the system of equations turns to: 

 

(𝑐1
(𝑘)𝐷2 + 𝑐2

(𝑘)𝐷 + 𝑐3
(𝑘))𝑢0

(𝑘) + 𝑐4
(𝑘) = 0

(𝑐1
(𝑘)𝐷2 + 𝑐5

(𝑘)𝐷+ 𝑐6
(𝑘) + 𝑐7

(𝑘))𝜓(𝑘) + 𝑐7
(𝑘)𝐷𝑤(𝑘) = 0

(𝑐1
(𝑘)𝐷2 + 𝑐8

(𝑘)𝐷)𝑤(𝑘) + (𝑐1
(𝑘)𝐷+ 𝑐8

(𝑘))𝜓(𝑘) + 𝑐9
(𝑘) = 0

}  (17) 

where 𝐷 =
d

d𝑟
,  

𝑐1
(𝑘)
= 𝑟(𝑘)ℎ(𝑟(𝑘))𝐸(𝑟(𝑘)), 

𝑐2
(𝑘) =

d𝑐1

d𝑟
|
𝑟=𝑟(𝑘)

+
2𝜈(𝑟(𝑘))𝑐1

(𝑘)

1−(𝜈(𝑟(𝑘)))
2

d𝜈(𝑟)

d𝑟
|
𝑟=𝑟(𝑘)

, 

𝑐3
(𝑘) =

𝜈(𝑟(𝑘))

𝑟(𝑘)

d𝑐1

d𝑟
|
𝑟=𝑟(𝑘)

+ 𝑐1
(𝑘) (1+

2(𝜈(𝑟(𝑘)))
2

𝑟(𝑘)(1−(𝜈(𝑟(𝑘)))
2
)
)
d𝜈(𝑟)

d𝑟
|
𝑟=𝑟(𝑘)

−
ℎ(𝑟(𝑘))𝐸(𝑟(𝑘))

𝑟(𝑘)
(𝜈(𝑟(𝑘)) + 1), 

𝑐4
(𝑘) = 𝜌(𝑟(𝑘))ℎ(𝑟(𝑘))(𝑟(𝑘))

2
(1 − (𝜈(𝑟(𝑘)))

2

)𝜔2 − 𝑟(𝑘)(𝜈(𝑟(𝑘)) + 1)
d(𝐸(𝑟)ℎ(𝑟)𝛼(𝑟)𝑇(𝑟))

d𝑟
|
𝑟=𝑟(𝑘)

, 

𝑐5
(𝑘) =

1

(ℎ(𝑟(𝑘)))
2

d(𝑟𝐸(𝑟)(ℎ(𝑟))
3
)

d𝑟
|
𝑟=𝑟(𝑘)

+
2𝜈(𝑟(𝑘))𝑐1

(𝑘)

1−(𝜈(𝑟(𝑘)))
2

d𝜈(𝑟)

d𝑟
|
𝑟=𝑟(𝑘)

, 

𝑐6
(𝑘) =

𝜈(𝑟(𝑘))

𝑟(𝑘)(ℎ(𝑟(𝑘)))
2

d (𝑟𝐸(𝑟)(ℎ(𝑟))
3
)

d𝑟
|

𝑟=𝑟(𝑘)

+ ℎ(𝑟(𝑘))𝐸(𝑟(𝑘))(1+
2(𝜈(𝑟(𝑘)))

2

1 − (𝜈(𝑟(𝑘)))
2)
d𝜈(𝑟)

d𝑟
|
𝑟=𝑟(𝑘)

 

−
ℎ(𝑟(𝑘))𝐸(𝑟(𝑘))

𝑟(𝑘)
(𝜈(𝑟(𝑘)) + 1), 

𝑐7
(𝑘) = 6(𝜈(𝑟(𝑘)) − 1)

𝑟(𝑘)𝐸(𝑟(𝑘))𝑘𝑠

ℎ(𝑟(𝑘))
, 

𝑐8
(𝑘)
=

𝑑𝑐1

𝑑𝑟
|
𝑟=𝑟(𝑘)

−
𝑐1
(𝑘)

(1+𝜈(𝑟(𝑘)))

𝑑𝜈(𝑟)

𝑑𝑟
|
𝑟=𝑟(𝑘)

, 

𝑐9
(𝑘) = 2(𝜈(𝑟(𝑘)) + 1)𝑟(𝑘)𝑞𝑧, 

 

in which 𝑐𝑖
(𝑘)

 , (𝑖 = 1,2,… ,9)  are functions of 𝑟(𝑘) . Using the semi-analytical method to solve the differential equation for 

temperature and system of displacement differential equations (17), we find 
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𝑇(𝑘) = 𝐵1
(𝑘) + 𝐵2

(𝑘)e−𝐺1
(𝑘)
𝑟 ,

𝑢0
(𝑘) = 𝑋1

(𝑘)𝑒𝑥𝑝(𝜆1
(𝑘)𝑟) + 𝑋2

(𝑘)𝑒𝑥𝑝(𝜆2
(𝑘)𝑟) −

𝑐4
(𝑘)

𝑐3
(𝑘) ,

𝜓(𝑘) = 𝑋3
(𝑘)
𝑒𝑥𝑝(𝜆3

(𝑘)
𝑟) + 𝑋4

(𝑘)
𝑒𝑥𝑝(𝜆4

(𝑘)
𝑟) + 𝑋5

(𝑘)
𝑒𝑥𝑝(𝜆5

(𝑘)
𝑟) + 𝐴1,

𝑤(𝑘) = −
𝑋3
(𝑘)

𝜆3
(𝑘) 𝑒𝑥𝑝(𝜆3

(𝑘)𝑟) −
𝑋4
(𝑘)

𝜆4
(𝑘) 𝑒𝑥𝑝(𝜆4

(𝑘)𝑟) −
𝑋5
(𝑘)

𝜆5
(𝑘) 𝑒𝑥𝑝(𝜆5

(𝑘)𝑟)𝐴2 − 𝑟𝐴3 +𝑋6
(𝑘)

}
 
 
 

 
 
 

  (18) 

where 𝜆1
(𝑘)

, 𝜆2
(𝑘)

 are the roots of 𝑐1
(𝑘)𝜆2 + 𝑐2

(𝑘)𝜆 + 𝑐3
(𝑘) = 0; 𝜆4

(𝑘)
, 𝜆5

(𝑘)
 are the roots of 𝑐1

(𝑘)𝜆2+ 𝑐5
(𝑘)𝜆 + 𝑐6

(𝑘) = 0; and 

𝐺1
(𝑘) = (

1

𝑟
+

1

ℎ(𝑟)

dℎ(𝑟)

d𝑟
+

1

𝑘𝑇(𝑟)

d𝑘𝑇(𝑟)

d𝑟
)|
𝑟=𝑟(𝑘)

,     𝜆3
(𝑘) = −

𝑐8
(𝑘)

𝑐1
(𝑘), 

 𝐴1 =
𝑐7
(𝑘)
𝑐9
(𝑘)

𝑐6
(𝑘)
𝑐8
(𝑘),     𝐴2 =

1

𝑐7
(𝑘) (

𝑐8
(𝑘)(𝑐8

(𝑘)
−𝑐5

(𝑘))

𝑐1
(𝑘) + 𝑐6

(𝑘)
+ 𝑐7

(𝑘)
),     𝐴3 =

𝑐9
(𝑘)(𝑐6

(𝑘)
+𝑐7

(𝑘))

𝑐8
(𝑘)
𝑐6
(𝑘) , 

 

here 𝐵1
(𝑘)

 , 𝐵2
(𝑘)

 , 𝑋1
(𝑘)

 , 𝑋2
(𝑘)

 , 𝑋3
(𝑘)

 , 𝑋4
(𝑘)

 , 𝑋5
(𝑘)

  and 𝑋6
(𝑘)

  are the unknowns of differential equations for kth subsection. The 

thermal and displacements solution (18) is correct at 

𝑟(𝑘) −
𝑠(𝑘)

2
≤ 𝑟 ≤ 𝑟(𝑘) +

𝑠(𝑘)

2
, (19) 

where 𝑠(𝑘) and 𝑟(𝑘) are the radial width and the mean radius of the kth subsection. 

 

 
 

Fig. 2. Subsection of the radial domain by semi-analytical technique. 

Continuity relations for temperature and displacements for two neighboring subsections can be written as: 

 

Φ(𝑘)|
𝑟=𝑟(𝑘)+

𝑆(𝑘)

2

= Φ(𝑘+1)|
𝑟=𝑟(𝑘+1)−

𝑆(𝑘+1)

2

, (20) 

here Φ takes the following values 𝑇, 
d𝑇

d𝑟
, 𝑢𝑧, 

d𝑢𝑧

d𝑟
, 𝑀𝑟, 𝑄𝑟, and 𝜎𝑟. 

Continuity relations (20) with the three different status of boundary conditions (14), (15), and (16) individually yields a linear 

system of unknowns 𝐵𝑖
(𝑘)

  and 𝑋𝑗
(𝑘)

  (𝑖 = 1,2 , 𝑗 = 1,… ,5 , 𝑘 = 1,2,… . ,𝑚 ). After obtaining the solution, the temperature and 

displacements at each subsection become known. To reduce the error coefficient and obtain highly accurate numerical results, we 

can divide the radial domain into a larger number of subsections. 

For appropriateness, we assume the following dimensionless notations 

𝑟 =
𝑟

𝑏
, 𝑟𝑎 =

𝑎

𝑏
, ℎ =

ℎ

ℎ0
, 𝑢0 =

𝑢0
𝑏
, 𝜓 =

𝜓

𝑏
, 𝑤 =

𝑤

𝑏
, 𝜔 =

𝜔

ℎ0𝐸𝑎
, 𝑞

𝑧
=

𝑞𝑧
𝑘𝑠ℎ0𝐸𝑎

, 

𝐸(𝑟) =
𝐸(𝑟)

𝐸(𝑎)
= (𝛿1 − 1)(

𝑟 − 𝑟𝑎
1 − 𝑟𝑎

)

𝑛

+ 1 −
𝛽

2
(𝛿1 + 1), 

𝜌(𝑟) =
𝜌(𝑟)

𝜌(𝑎)
= (𝛿2 − 1) (

𝑟 − 𝑟𝑎
1 − 𝑟𝑎

)

𝑛

+ 1−
𝛽

2
(𝛿2 + 1), 

𝛼(𝑟) =
𝛼(𝑟)

𝛼(𝑎)
= (𝛿3 − 1)(

𝑟 − 𝑟𝑎
1 − 𝑟𝑎

)

𝑛

+ 1−
𝛽

2
(𝛿3 + 1), 

𝑘(𝑟) =
𝑘(𝑟)

𝑘(𝑎)
= (𝛿4 − 1)(

𝑟 − 𝑟𝑎
1 − 𝑟𝑎

)

𝑛

+ 1−
𝛽

2
(𝛿4 + 1), 

 

where 𝛿1 =
𝐸(𝑏)

𝐸(𝑎)
, 𝛿2 =

𝜌(𝑏)

𝜌(𝑎)
, 𝛿3 =

𝛼(𝑏)

𝛼(𝑎)
, and 𝛿4 =

𝑘(𝑏)

𝑘(𝑎)
 then removing the bar symbols for simplicity. 



488  Tantawy et al. 

5. Viscoelastic solution for gradient porous disk  

Assume that viscoelastic material recognized by 𝐸(𝑏), 𝜈(𝑏) or by bulk modulus 𝐾 and it is supposed to be unrelaxed, i.e., 

𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and ϖ̂ is the dimensionless kernel of the relaxation function which is associated with the corresponding Poisson’s 
ratio by formulation 

𝐸(𝑏) =
9𝐾ϖ̂

2+ϖ̂
, 𝜈(𝑏) =

1−ϖ̂

2+ϖ̂
,  (21) 

where 𝐾 = 𝜉𝐸(𝑎), then the gradient relation (2) takes the form 

𝐸(𝑟) = (
9𝜉ϖ̂

2+ϖ̂
− 1) (

𝑟−𝑟𝑎

1−𝑟𝑎
)
𝑛

+ 1 −
𝛽

2
(
9𝜉ϖ̂

2+ϖ̂
+ 1) ,

𝜈(𝑟) = (
1−ϖ̂

2+ϖ̂
− 𝜈(𝑎)) (

𝑟−𝑟𝑎

1−𝑟𝑎
)
𝑛

+ 𝜈(𝑎) −
𝛽

2
(
1−ϖ̂

2+ϖ̂
+ 𝜈(𝑎))

}  (22) 

To resolve the quasi-static issue of linear theory for porous FG viscoelastic disk, we employ a technique of reducing the non-

homogenous porous FG viscoelastic disk to a series of successive homogenous ones [40, 41].  

Displacements can be taken as constant functions in elastic components and operator functions of time in viscoelastic 

components. Overall, 𝑤(𝑟), 𝑁𝑟(𝑟), 𝑀𝑟(𝑟) and 𝑄𝑟(𝑟) written by Illyushin’s approximation technique, of unified shape 

𝑓(𝑟, 𝑧, ϖ̂) = ∑ 𝑦𝑖(𝑟, 𝑧)𝜑𝑖(ϖ̂)
5
𝑖=1 , (23) 

where 𝑓(𝑟, 𝑧, ϖ̂) is one of the functions 𝑤(𝑟), 𝑁𝑟(𝑟), 𝑀𝑟(𝑟) and 𝑄𝑟(𝑟) and 𝜑𝑖(ϖ̂) are several recognized kernels, structured 

based on the kernel ϖ̂ and might be selected in the format 

𝜑1 = 1, 𝜑2 = ϖ̂, 𝜑3 = π̂ =
1

ϖ̂
,

𝜑4 = g1
2
̂ , 𝜑5 = g2̂, g𝑥̂ =

1

1+𝑥ϖ̂
, 𝑥 =

1

2
, 2
}  (24) 

The coefficients 𝑦𝑖(𝑟, 𝑧), (𝑖 = 1,2, . . ,5) get from the linear algebraic equations system 

𝑙𝑖𝑗𝑦𝑗 = 𝑔𝑖 ,

𝑙𝑖𝑗 = ∫ 𝜑𝑖(ϖ̂)𝜑𝑗(ϖ̂)𝑑ϖ̂
1

0
,

𝑔𝑖 = ∫ 𝑓(𝑟, 𝑧, ϖ̂)𝜑𝑖(ϖ̂)𝑑ϖ̂
1

0

}  (25) 

Postulate the relaxation function 

𝜛(𝑡) = 𝑎1 + 𝑏1e
−𝛼1𝑡,   (26) 

where 𝑎1, 𝑏1, 𝛼1 are constants specified through practical experience. 
The Laplace-Carson transformation is known as  

𝐹(𝑝) = 𝑝∫ e−𝑝𝑥𝑓(𝑥)d𝑥
∞

0
.  (27) 

The transformation applied to specified functions 𝜋(𝑡) and g𝑥(𝑡), (𝑥 = 0.5,2). Indicating that transformations of 𝜋(𝑡) and 

g𝑥(𝑡) by 𝜋∗ and g𝑥
∗  since 𝜛∗ = 𝑎1 +

𝑏1𝑠

𝑠+𝛼1
 consequently 

𝜋(𝑡) =
1

𝑎1
(1 −

𝑏1

𝑎1+𝑏1
e
−

𝑎1𝜏

𝑎1+𝑏1) , 𝜏 = 𝛼1𝑡,

g𝑥(𝑡) =
1

1+𝑥𝑎1
(1 −

𝑥𝑏1

1+𝑥(𝑎1+𝑏1)
e
−

(1+𝑥𝑎1)𝜏

1+𝑥(𝑎1+𝑏1)) , 𝑥 = 0.5,2,

}  (28) 

Equation (23) for a viscoelastic composite used to get the formulation 𝑓(𝑟, 𝑧, ϖ̂) as function of (𝑟, 𝑧, 𝑡). consequently so, 

𝑓(𝑟, 𝑧, 𝑡) = 𝑦1ω(𝑡) + 𝑦2∫ϖ(𝑡 − 𝜏)𝑑ω(𝜏)

1

0

+ 𝑦3∫𝜋(𝑡 − 𝜏)𝑑ω(𝜏)

1

0

 

+𝑦4∫g1
2
(𝑡 − 𝜏)𝑑ω(𝜏)

1

0

+ 𝑦5∫g2(𝑡 − 𝜏)𝑑ω(𝜏)

1

0

 

 

or 

𝑓(𝑟, 𝑧, 𝑡) = 𝑦1q(𝑡) + 𝑦2∫ϖ(𝑡 − 𝜏)dq(𝜏)

1

0

+ 𝑦3∫𝜋(𝑡 − 𝜏)dq(𝜏)

1

0

+ 𝑦4∫g1
2
(𝑡 − 𝜏)dq(𝜏)

1

0

 

+𝑦5 ∫ g2(𝑡 − 𝜏)dq(𝜏)
1

0
. 

(29) 

Suppose the formulation of rotation velocity ω(𝑡), and the vertical load 𝑞𝑧(𝑡) as  

ω(𝑡) = {
𝜔0𝑡 0 ≤ 𝑡 ≤ 𝑡0

𝜔0𝐻(𝑡 − 𝑡0) 𝑡 ≥ 𝑡0
  



Journal of Computational Applied Mechanics 2023, 54(4): 482-500                                       489 

𝑞𝑧(𝑡) = {
𝑞0𝑡 0 ≤ 𝑡 ≤ 𝑡0

𝑞0𝐻(𝑡 − 𝑡0) 𝑡 ≥ 𝑡0
  

where 𝐻(𝑡) is the Heaviside unit step function and 𝜔0, 𝑡0, 𝑞0 are the initial values of rotation velocity, time, and vertical load 

sequentially. The formulation (29) is written as 

𝑓(𝑟, 𝑧, 𝑡) = 𝜔0 ∑ 𝑦𝑗(𝑟, 𝑧)𝑉𝑗(𝑡)
5
𝑗=1 , (30) 

where 

𝑦1 = {
𝑡 0 ≤ 𝑡 ≤ 𝑡0

𝐻(𝑡 − 𝑡0) 𝑡 ≥ 𝑡0
  

𝑦2 = {
−𝐹1(1) + 2𝑎1𝑡0 0 ≤ 𝑡 ≤ 𝑡0
𝑎1 + 𝐹2(1) 𝑡 ≥ 𝑡0

  

𝑦3 =

{
 
 

 
 

1

𝑎1
2 𝐹1 (

𝑎1
𝑎1 + 𝑏1

) 0 ≤ 𝑡 ≤ 𝑡0

1

𝑎1
(1 −

𝐹2 (
𝑎1

𝑎1 + 𝑏1
)

𝑎1 + 𝑏1
) 𝑡 ≥ 𝑡0

  

𝑦4 =

{
 
 

 
 

2

(2 + 𝑎1)
2
(𝐹1 (

2 + 𝑎1
2+ 𝑎1 + 𝑏1

) − 2𝑡0) 0 ≤ 𝑡 ≤ 𝑡0

2

(2 + 𝑎1)
(1 −

𝐹2 (
2 + 𝑎1

2 + 𝑎1 + 𝑏1
)

(2 + 𝑎1 + 𝑏1)
) 𝑡 ≥ 𝑡0

  

𝑦5 =

{
 
 

 
 

1

(1 + 2𝑎1)
2
(2𝐹1 (

1 + 2𝑎1
1 + 2𝑎1 + 2𝑏1

) − 𝑡0) 0 ≤ 𝑡 ≤ 𝑡0

1

(1 + 2𝑎1)
(1 −

2𝐹2 (
1 + 2𝑎1

1+ 2𝑎1 + 2𝑏1
)

(1 + 2𝑎1 + 2𝑏1)
) 𝑡 ≥ 𝑡0

  

here 𝐹1(𝑦) = 𝑏1𝑒
−𝑦𝑡 + 𝑎1𝑡0 − 𝑏1𝑒

−𝑦(𝑡−𝑡0), 𝐹2(𝑦) = 𝑏1𝑒
−𝑦(𝑡−𝑡0), and the other formulation gets it by substitution  𝜔0  by 𝑞0. 

6. Verification of numerical outputs of solid and annular FG porous disk 

In this research, the analytical results were studied and the numerical results were verified for a viscous annular porous disk of 

exponentially varying thickness, which undergoes a gradient as a power function in its physical and thermal characteristics in radius 

direction. The disk is exposed to thermal and mechanical forces on the inner surface consisting of PZT-4 and the outer surface 

consisting of cadmium selenide. The numerical results for three different cases of solid disk and annular disk are divided to discuss 

influences of inhomogeneity and porosity as well as the effect of relaxation time in the case of viscous porous disk. 

6.1 Status 1: Circular solid porous disk 

To study the case of a circular viscous solid porous disk, we assume that the boundary conditions on the disk satisfy equation 

(14). We first begin by studying the effect of heterogeneity, then porosity, and then relaxation time for the viscous porous disk. 

Figure 3 studies the result of bending on a solid porous circular disk of variable thickness and demonstrates the effect of the 

inhomogeneity parameter at 𝑛 = 2,4,6,8 and 𝑛 ⟶ ∞ in the direction of the radius. Fig. 3a shows the value of displacement 𝑤 

for several values of inhomogeneity parameter 𝑛. It is clear in the image that displacement 𝑤 value increased with the increase 

in radius, achieving zero at the outer radius 𝑟 = 1 and fulfilling the boundary conditions. The figure furthermore presents that the 

minimum value of displacement 𝑤 occurs at 𝑛 = 4 along the radius. Fig. 3b presents the value of the force per unit length 𝑁𝑟 
and the figure shows that the value of the force 𝑁𝑟 begins to increase from the center of the disk until 𝑟 = 0.1 and then begins 

to decrease until the outer surface of the disk 𝑟 = 1, achieving a value of zero, which corresponds to the boundary conditions. It 

is clear from the figure that the value of the force 𝑁𝑟 increases with the increase in the value of the inhomogeneity parameter 𝑛, 

as its lowest value is done at 𝑛 = 2 and its highest value is done when 𝑛 ⟶∞. The value of the moment per unit length 𝑀̅𝑟 

was illustrated in Fig. 3c, it is clear that the value of the moment 𝑀̅𝑟 is zero at the center of the disc, then it begins to decrease 

until approximately the middle of the thickness, and then it begins to increase until the outer surface of the disc, achieving zero 

and agreeing with the boundary conditions on the external surface. Fig. 3d displayed the value of the transverse shear resultant 𝑄̅𝑟, 
from which it appears that all curves are almost identical along the disk at numerous values of inhomogeneity parameter 𝑛. The 

value of 𝑄̅𝑟 starts from zero at the center of the disk according to the boundary conditions and then begins to increase until the 

external surface of the disk. Fig. 3e studies the temperature distribution along the disk diameter and shows the temperature curves 

with changing radius at different values of the inhomogeneity parameter 𝑛, fulfilling the boundary conditions. 
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Fig. 3. Non-dimensional pending components and temperature at different inhomogeneity factor 𝒏 with porosity parameter 𝜷 = 𝟎. 𝟏 in circular 

solid porous disk. 

Figure 4 presents the bending components and temperature at different values of the porosity coefficient 𝛽 = 0,0.1,0.3,0.5 

and 𝛽 = 0.7 with constant value of inhomogeneity parameter 𝑛 = 10 in the case of the porous circular disc of variable thickness. 

The value of displacement 𝑤 at various values of the porosity coefficient 𝛽 was explained and presented in Fig. 4a. It is clear 

from the drawing that the displacement 𝑤 value starts from the center of the disk, 𝑟 = 0, heading to the outer surface, achieving 

a value of zero at 𝑟 = 1, and conforming to the boundary conditions. 
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Fig. 4. Non-dimensional pending components and temperature at various values of porosity and 𝒏 = 𝟏𝟎 in circular solid porous disk. 

 

Fig. 4b displays the value of the forces 𝑁𝑟 per unit length at different values of porosity 𝛽 and shows that the value of the 

force 𝑁𝑟 decreases with an growth in the porosity factor 𝛽. The highest strength value was achieved in the case of the non-porous 

disc 𝛽 = 0. Fig. 4c lights the moments per unit length 𝑀̅𝑟 at different values of 𝛽, and it is clear that 𝑀̅𝑟 start from zero, then 

decrease until the middle of the thickness at values of 𝛽 = 0.1,0.3,0.5 and 𝛽 = 0.7 then they begin to increase until the outer 

surface at 𝑟 = 1, achieving the value zero. In the case of a non-porous disc 𝛽 = 0, the curve starts from zero at the center of the 

disc, then begins to increase until the middle of the thickness of the disc, then decreases towards the outer surface 𝑟 = 1, fulfilling 

the boundary conditions 𝑀̅𝑟 = 0 at 𝑟 = 1. As for 𝑄̅𝑟, its rate of change with the change in porosity coefficient 𝛽 was shown in 

Fig. 4d . It appears that the curves match roughly, achieving a value of zero at the center of the disk. From the curves, the value of 

𝑄̅𝑟 increases with the increase in the porosity coefficient 𝛽 along the length of the disk. Fig. 4e illustrates temperature distribution 

𝑇 at several values of the porosity coefficient 𝛽, fulfilling the limit conditions for the temperature at the center of the disk and at 

the outer surface of the disk. 
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Fig. 5. Pending components along time parameter of viscoelastic FG circular solid porous disk. 

 

Figure 5 clarifies the value of 𝑤, 𝑁𝑟, 𝑀𝑟, and 𝑄
𝑟
 at multiple positions of the disc, 𝑟 = 0.3,0.6 and 0.9 with the relaxation 

time 𝜏 to examine the influence of the time factor on bending components. It is clear from the images that the curves increase or 

decrease starting from 𝜏 = 0 until they reach a state of stability at a specific value of the relaxation time 𝜏 = 3.5. 

6.2 Status 2: Mounted free hollow porous disk  

To study the second status of a hollow porous disk of variable thickness, we assume that the disk is fixed at the internal surface, 

𝑟 = 0.2, and free to move at the outer surface, 𝑟 = 1. The study aims to know the influence of inhomogeneity parameter 𝑛 in 

Fig. 6 and the effectiveness of the porosity factor 𝛽 in Fig. 7, as well as to know the effect of the time factor on the hollow porous 

disk in Fig. 8. 

In Fig. 6, the effectiveness of the inhomogeneity parameter 𝑛 on bending and temperature components appears very clearly. 

It is clear from Fig. 6a that the displacement 𝑤 along the thickness fulfills the boundary conditions of zero at the inner radius 

𝑟 = 0.2. Also, the values of all curves, with the change in the value of the inhomogeneity parameter 𝑛, begin to increase from the 

inner surface at 𝑟 = 0.2 until 𝑟 = 1. As for Fig. 6b, the effect of force 𝑁𝑟 per unit length with a value of zero on the outer 

surface 𝑟 = 1  appears, identical to the boundary conditions. It is clear from the drawing that the force 𝑁𝑟  value begins to 

decrease in the direction of the radius. Fig. 6c shows the value of the moments 𝑀𝑟 per unit length in the direction of the radius 

with numerous values of the inhomogeneity parameter 𝑛. The value of the moments 𝑀𝑟 begins to decrease from the inner surface, 

𝑟 = 0.2, until approximately the middle of the disk, then it begins to increase, achieving a value of zero on the external surface of 

the disk, 𝑟 = 1. The influence of inhomogeneity parameter 𝑛 on 𝑄
𝑟
 is clearly evident from Fig. 6d where the value begins to 

increase from 𝑟 = 0.2 until it becomes zero at 𝑟 = 1, matching the boundary conditions. It is also clear that the value of 𝑄
𝑟
 

decreases with the increase in the inhomogeneity parameter 𝑛, as it achieves its lowest value when 𝑛 ⟶∞, and its highest value 

of 𝑄
𝑟
 is achieved in the non-porous disk, that is when 𝛽 = 0. The effectiveness of inhomogeneity parameter 𝑛 on the thermal 

distribution is shown in Fig. 6e, which shows the effect of temperature 𝑇 by variation value of inhomogeneity parameter 𝑛, 

achieving the boundary conditions for temperature parameter 𝑛 on the thermal distribution is shown in Fig. 6e, which shows the 

effect of temperature 𝑇. 
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Fig. 6 Non-dimensional pending components and temperature at different inhomogeneity factor 𝒏 with porosity parameter 𝜷 = 𝟎. 𝟏 in mounted 

free hollow porous disk. 
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Fig. 7 Non-dimensional pending components and temperature at various values of porosity and 𝒏 = 𝟏𝟎 in the mounted free hollow porous disk. 

 
Figure 7 shows the effectiveness of the porosity coefficient on the hollow porous disk of variable thickness, with various values 

of the porosity coefficient 𝛽 = 0.1,0.3,0.5,0.7 in the case of the porous disk and 𝛽 = 0 in the case of the non-porous disk. In the 

Fig. 7a, the displacement 𝑤 study with numerous values of the porosity coefficient in the direction of the radius shows that the 

largest value of the displacement 𝑤 was achieved in the case of 𝛽 = 0.7, while the smallest value of the displacement 𝑤 was 

achieved in the case of the non-porous disk, 𝛽 = 0. Therefore, the displacement 𝑤 is increasing as the porosity coefficient grows. 

The exact opposite appears in Fig. 7b to study the effectiveness of changing the porosity parameter 𝛽 on the force 𝑁𝑟 per unit 

length, where the highest value of the force 𝑁𝑟 is achieved in the case of the non-porous disk, 𝛽 = 0, and the lowest value of the 

force 𝑁𝑟 is achieved in the case of 𝛽 = 0.7. Fig. 7c shows the value of the moment 𝑀𝑟 per unit length, and it is clear from the 

curves that the gradation value of the porosity coefficient 𝛽 had a significant effect until 𝑟 = 0.75, then the curves began to match. 

The value of 𝑄
𝑟
 with the change in the porosity factor 𝛽 was shown in Fig. 7.d, and it is clear from it that there is an inverse 

relationship between the change in the porosity factor 𝛽, as the value of the porosity factor 𝛽 increases, the value of 𝑄
𝑟
 decreases. 

The result of the effect of the porosity factor 𝛽 on temperature appears in Fig. 7e, and it shows a clear effect on the temperature 

𝑇 curves in the radial direction. 

  

  
Fig. 8. Pending components along time parameter of viscoelastic FG mounted free hollow porous disk. 

A study of the impact of the time parameter on the porous, viscous hollow disc of variable thickness appears in Fig. 8, from 

which it is clear that all the bending components that need to be studied tend to reach a state of stability after some time 𝜏 = 0.35 

to represent a state of equilibrium for a viscous disk. 

6.3 Status 3: Mounted hollow supported cased porous disk  

The case of the current study is the case of a mounted hollow supported cased porous disk fixed from the inside and outside to 

discuss the impact of the inhomogeneity parameter 𝑛, porosity 𝛽, and relaxation time 𝜏 on the porous disk in Figures 9 and 10, 

respectively. 
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Fig. 9. Non-dimensional pending components and temperature at different inhomogeneity factor 𝒏 with porosity parameter 𝜷 = 𝟎. 𝟏 in the 

mounted hollow supported cased porous disk. 

In Fig. 9, the effect of inhomogeneity parameter 𝑛  of different values at 𝑛 = 2,4,6,8  and 𝑛 ⟶ ∞  on the bending 

components of the porous disk is studied. It is clear from Fig. 9a that the displacement 𝑤 for numerous values of 𝑛 are achieved 

in the internal and external surfaces of the disk. Fig 9b shows the effect of 𝑛 on the force 𝑁𝑟 in which the lowest value of 𝑁𝑟 is 

achieved when 𝑛 = 2.  The moment 𝑀𝑟 are displayed in Fig. 9c, in which the curves are clearly affected by the inhomogeneity 

parameter 𝑛. The value zero is achieved on the outer surface, which is consistent with the boundary conditions. Fig. 9d shows the 

transverse shear resultant value 𝑄
𝑟
 with the variation of the inhomogeneity parameter 𝑛, and it is clear from it that the lowest 

value of 𝑄
𝑟
  is achieved in the case 𝑛 = 6 . Fig. 9e matches Fig. 6e, and it displays the effectiveness of the inhomogeneity 

parameter 𝑛 on temperature. 
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Fig. 10. Non-dimensional pending components and temperature at various values of porosity and 𝒏 = 𝟏𝟎 in the mounted hollow supported cased 

porous disk. 

Fig. 10 studies the effectiveness of the porosity coefficient on the bending and temperature components. Fig. 10a shows the 

value of the behavior of the displacement 𝑤 with a change in the porosity coefficient 𝛽. The displacement 𝑤 achieves a value 

of zero at the inner and outer surfaces of the disk following the boundary conditions. Fig. 10b presents the influence of the porosity 

coefficient 𝛽 on the force 𝑁𝑟, and it is clear that the lowest value of the force 𝑁𝑟 occurs when 𝛽 = 0.7. In Fig. 10c, the moment 

𝑀𝑟 are displayed, and it is clear that the curves match significantly with the difference in the value of the porosity coefficient 𝛽 

in the case of the porous disk, while in the case of the non-porous disk 𝛽 = 0, the value of the moment 𝑀𝑟 in the direction of the 

radius varies greatly. In Fig. 10.d, the value of 𝑄
𝑟
 was shown which achieves the highest value in status of the non-porous disk 

when 𝛽 = 0. As the value of the porosity factor 𝛽 grows, the value of 𝑄
𝑟
 decreases. Figure 10e matches Fig. 7d, and it presents 

the influence of porosity coefficient 𝛽 on temperature 𝑇. 
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Fig. 11. Pending components along time parameter of viscoelastic FG mounted hollow supported cased porous disk. 

 

Figure 11 studies the impact of the relaxation time parameter on bending components in the viscous porous disk. The results of 

Fig. 11 agree with those in Figs. 5 and 8, where the bending components reach a state of stability after a constant time rate 𝜏 = 3.5. 

7. Fundamental difference in results between a porous and a non-porous disk  

To find out the fundamental differences in the numerical results for the FG exponentially porous disc, a comparison was 

presented in the numerical results for three special statuses of the variable thickness porous disc, and the results of the bending 

components were tabulated for several values of the inhomogeneity parameter 𝑛 = 5,10,20  and at numerous positions 𝑟 =
0.3,0.5,0.7 of the porous disc in the direction of the radius. The results and comparison in the case of the porous disk 𝛽 = 0.1 

and the non-porous disk 𝛽 = 0 are shown in Table 2 as follows. 

7.1 Status 1: Circular solid porous disk  

It can be seen from Table 2 in status of the porous solid circular disk as follows 

- The largest value of force per unit length 𝑁𝑟 is achieved in the status of a non-porous disk, while the largest value of 

transverse shear resultant 𝑄
𝑟
 is achieved in the case of a porous disk at various values of inhomogeneity parameter 𝑛 

and different positions. 

- The numerical results for the displacement 𝑤 differ in the porous and non-porous disk, as the displacement 𝑤 achieves 

its highest value at 𝑛 = 10,20 in the case of the non-porous disk and its highest value is achieved at 𝑛 = 5 in the status 

of the porous disk. 

- The value of moments per unit length 𝑀𝑟 reaches the highest value in the non-porous disk at 𝑛 = 10 and the highest 

value is achieved in the porous disk at 𝑛 = 5,20. 

7.2 Status 2: Mounted free hollow porous disk  

The numerical results in the comparison between the porous disk and the non-porous disk differed from the first status, as it 

turns out that 

- The non-porous disc achieves the highest results for bending components 𝑁𝑟, 𝑀𝑟, 𝑄𝑟 at all values of the inhomogeneity 

parameter 𝑛 along the radial direction, while achieving the lowest value for displacement 𝑤. 

7.3 Status 3: Mounted hollow supported cased porous disk  

- The non-porous disc achieves the highest values of displacement 𝑤 , force per unit length 𝑁𝑟  and transverse shear 

resultant 𝑄
𝑟
 at all values of the inhomogeneity parameter 𝑛 and different positions of the disk. 

- The value of the moments per unit length 𝑀𝑟 in status of the porous disk and the non-porous disk varied greatly depending 

on the inhomogeneity parameter and the radius value. 

Table 2. The fundamental difference in results between a porous and a non-porous 

Case Variable 𝑟̅ 
 Perfect FGPM (𝛽 = 0)  Porous FGPM (𝛽 = 0.1)  

𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 5 𝑛 = 10 𝑛 = 20 

C
ir

cu
la

r 
so

li
d
 d

is
k
 

𝑤̅ 0.3  -40.5469 35.1355 -15.0856  -3.3389 -21.0125 -19.5529  

 0.5  -38.5304 33.1359 -15.1883  -4.1221 -20.7533 -19.7939  

 0.7  -27.5894 22.6266 -15.0736  -6.2801 -18.4111 -20.2961  

𝑁𝑟 0.3  8.6779 11.1009 9.9916  8.5994 8.7328 9.0839  

 0.5  6.1238 7.9906 7.2001  5.9749 6.1775 6.4451  

 0.7  3.8832 4.0293 4.0819  3.3727 3.5563 3.5407  

𝑀𝑟 0.3  -5.3979 5.5183 0.3488  1.9789 -0.5607 0.6607  

 0.5  -12.1289 11.1681 0.2222  3.5358 -1.7232 0.8247  

 0.7  -2.8511 14.9594 -3.5389  -2.2204 -10.4352 -2.7318  

0.3  0.21138 0.21135 0.21135  0.22913 0.229083 0.229083  
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𝑄𝑟 × 10
3 

0.5  1.646265 1.64288 1.642683  1.796728 1.792142 1.791889  

0.7  6.993439 6.929957 6.90587  7.684698 7.59787 7.566041  

            

M
o
u
n
te

d
 f

re
e 

h
o
ll

o
w

 d
is

k
 

𝑤̅ 0.3  -0.1634 -0.4581 -0.7938  -0.1439 -0.2237 -0.2418  

 0.5  -0.6454 -6.0402 -12.2359  0.0839 -1.1313 -1.2006  

 0.7  -0.3597 -35.5466 -75.6892  4.6634 -2.7891 -2.9318  

𝑁𝑟 0.3  11.0613 16.1745 27.3155  9.7524 10.7592 10.7342  

 0.5  7.0898 10.7947 19.8356  6.1834 6.8763 6.8459  

 0.7  3.9989 4.8689 10.6742  3.5937 3.7225 3.6681  

𝑀𝑟 0.3  1.1161 15.6092 32.2686  -0.8299 2.0402 2.1388  

 0.5  0.1195 30.1793 64.7427  -4.0628 1.6693 1.6994  

 0.7  -2.1865 50.3772 115.1361  -2.3239 -3.6189 -2.9852  

𝑄𝑟 × 10
2 

0.3  -3.2093 -3.5208 -3.8105  -3.4484 -3.8187 -4.1607  

0.5  -2.5157 -2.7649 -3.0048  -2.7013 -2.9978 -3.2809  

0.7  -1.875 -2.0224 -2.2345  -2.0084 -2.1865 -2.4369  

            

M
o
u
n
te

d
 h

o
ll

o
w

 s
u
p
p
o
rt

ed
 c

as
ed

 d
is

k
 

𝑤̅ 0.3  -0.3111 2.9061 10.144  -0.5939 -0.3236 -0.5518  

 0.5  -1.3197 9.2752 37.514  -2.0182 -1.5963 -2.6433  

 0.7  -1.2728 7.4406 63.678  -1.3775 -4.1105 -7.0223  

𝑁𝑟 0.3  11.2376 12.2615 14.7917  10.2657 10.8699 11.0726  

 0.5  7.2064 8.2306 11.6698  6.5187 6.9479 7.0635  

 0.7  4.0598 3.8808 6.6358  3.7685 3.7583 3.7749  

𝑀𝑟 0.3  2.3199 -11.7113 -56.4237  2.6279 2.8047 4.5086  

 0.5  1.1857 6.1826 -12.9622  -1.0141 2.3376 3.7657  

 0.7  -1.7288 31.7798 55.4721  0.1281 -3.1028 -1.4048  

𝑄𝑟 0.3  -0.0605 0.6113 2.0644  -0.1149 -0.0561 -0.0971  

 0.5  -0.0487 0.5078 1.7114  -0.0938 -0.0448 -0.0787  

 0.7  -0.0415 0.4782 1.5918  -0.0848 -0.0356 -0.0669  
-  

8. Conclusions 

The bending response of a rotating viscous porous disk with exponential thickness gradient with mechanical and physical 

properties is presented and discussed in this study. Studying the components of bending in a porous disk using the first-order shear 

deformation theory (FSDT). The solution method was done by seeing the porous, viscous disk of variable thickness. Therefore, the 

solution method was based on using the semi-analytical solution method to get displacements of the porous disk of variable 

thickness, then using the correspondence principle and Illyushin’s approximation method, considering the disk as porous and 

viscous. Numerical results were presented and the difference in results with changes in the inhomogeneity parameter and porosity 

coefficient was explained. Graphs illustrating the time factor in the status of the viscous porous disk were also presented. A 

comparison between porous disk and non-porous disk for three different statutes of boundary conditions on the disk is presented 

and discussed. From this study, we can summarize the basic results in some points: 

▪ The principle of lower total energy is effective and important in deducing the relationships of bending components. 

▪ A noticeable change in the value of the bending components by changing the inhomogeneity parameter and the porosity factor 

in the porous disk with exponential thickness. 
▪ The porosity coefficient and inhomogeneity parameter had a clear effect on the numerical results of bending components in 

the status of the porous disk and the non-porous disk. 

▪ The semi-analytical solution is an efficient way to obtain a solution to the heat equation and the displacement equations. 

▪ The correspondence principle and Illyushin’s approximation technique are important items to obtain the solution for a viscous 

porous disk. 

▪ Obtaining a state of stability and equilibrium for the bending components in the viscous porous disk by changing the relaxation 

time parameter. 

▪ By choosing appropriate values for the inhomogeneity parameter and porosity factor, we can obtain particular values for 

bending components in the porous disc and the non-porous disc. 

▪ The numerical results demonstrated the importance of the study in modern engineering designs and advanced industrial 

applications in helping to design a viscous annular disk with graduated properties and variable thickness under the effect of 
many external factors and influences. 
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