[1] J. Roscow, Y. Zhang, J. Taylor, C. R. Bowen, Porous ferroelectrics for energy harvesting applications, European Physical Journal: Special Topics, Vol. 224, No. 14-15, pp. 2949-2966, 2015.
[2] G. Martínez-Ayuso, M. I. Friswell, S. Adhikari, H. H. Khodaparast, C. A. Featherston, Energy harvesting using porous piezoelectric beam with impacts, Procedia Engineering, Vol. 199, pp. 3468-3473, 2017.
[3] G. Martínez-Ayuso, H. Haddad Khodaparast, Y. Zhang, C. Bowen, M. Friswell, A. Shaw, H. Madinei, Model Validation of a Porous Piezoelectric Energy Harvester Using Vibration Test Data, Vibration, Vol. 1, No. 1, pp. 123-137, 2018.
[4] Y. Liao, J. Liang, Unified modeling, analysis and comparison of piezoelectric vibration energy harvesters, Mechanical Systems and Signal Processing, Vol. 123, pp. 403-425, 2019.
[5] Q. Li, Y. Kuang, M. Zhu, Auxetic piezoelectric energy harvesters for increased electric power output, AIP Advances, Vol. 7, No. 1, 2017.
[6] R. Ambrosio, A. Jimenez, J. Mireles, M. Moreno, K. Monfil, H. Heredia, Study of piezoelectric energy harvesting system based on PZT, Integrated Ferroelectrics, Vol. 126, No. 1, pp. 77-86, 2011.
[7] H. A. Sodano, D. J. Inman, G. Park, Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries, Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 799-807, 2005.
[8] A. Erturk, D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures, Vol. 18, No. 2, pp. 025009-025009, 2009.
[9] A. Erturk, D. J. Inman, On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters, Journal of Intelligent Material Systems and Structures, Vol. 19, No. 11, pp. 1311-1325, 2008.
[10] A. Erturk, D. J. Inman, A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters, Journal of Vibration and Acoustics, Vol. 130, No. 4, pp. 041002-041002, 2008.
[11] S. Adhikari, M. I. Friswell, D. J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Materials and Structures, Vol. 18, No. 11, pp. 115005-115005, 2009.
[12] N. A. Siddiqui, D.-j. Kim, R. A. Overfelt, B. C. Prorok, W. Laboratories, M. Engineering, A. Al, Shape Optimization of Cantilevered Devices for Piezoelectric Energy Harvesting Shape Optimization of Cantilevered Devices for Piezoelectric Energy Harvesting, No. July 2014, 2015.
[13] G. Zhang, S. Gao, H. Liu, S. Niu, A low frequency piezoelectric energy harvester with trapezoidal cantilever beam : theory and experiment, Microsystem Technologies, 2016.
[14] N. Chen, V. Bedekar, Modeling , Simulation and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting, Vol. 6, No. 4, pp. 5-18, 2017.
[15] M. Kim, J. Dugundji, B. L. Wardle, Efficiency of piezoelectric mechanical vibration energy harvesting, Smart Materials and Structures, Vol. 24, No. 5, pp. 55006-55006, 2015.
[16] P. Cahill, B. Hazra, R. Karoumi, A. Mathewson, V. Pakrashi, Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage, Mechanical Systems and Signal Processing, Vol. 106, pp. 265-283, 2018.
[17] M. Khazaee, A. Rezaniakolaie, A. Moosavian, L. Rosendahl, A novel method for autonomous remote condition monitoring of rotating machines using piezoelectric energy harvesting approach, Sensors and Actuators, A: Physical, Vol. 295, pp. 37-50, 2019.
[18] C. Maruccio, G. Quaranta, L. D. Lorenzis, Energy harvesting from electrospun piezoelectric nano fi bers for structural health monitoring of a cable-stayed bridge, Smart Materials and Structures, Vol. 25, No. 8, pp. 1-13, 2016.
[19] H. Li, C. Tian, Z. D. Deng, Energy harvesting from low frequency applications using piezoelectric materials, Applied Physics Reviews, Vol. 1, No. 4, 2014.
[20] M. Mir, M. N. Ali, J. Sami, U. Ansari, Review of mechanics and applications of auxetic structures, Hindawi Publishing Corporation, 2014.
[21] R. Hosseini, M. Babaei, A. Nadaf Oskouei, A review on structural response and energy absorption of sandwich structures with 3D printed core, Journal of Computational Applied Mechanics, 2023. en
[22] R. Hosseini, M. Babaei, A. Naddaf, The influences of various auxetic cores on natural frequencies and forced vibration behavior of sandwich beam fabricated by 3D printer based on third -order shear deformation theory, Vol. 54, No. 2, pp. 285-308, 2023.
[23] M. Babaei, M. H. Hajmohammad, K. Asemi, Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity, Aerospace Science and Technology, Vol. 96, pp. 105524-105524, 2020.
[24] M. Babaei, F. Kiarasi, K. Asemi, R. Dimitri, F. Tornabene, Transient Thermal Stresses in FG Porous Rotating Truncated Cones Reinforced by Graphene Platelets, 12, 2022].
[25] M. Babaei, F. Kiarasi, K. Asemi, M. Hosseini, Functionally graded saturated porous structures: A review, Journal of Computational Applied Mechanics, Vol. 53, No. 2, pp. 297-308, 2022.
[26] M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, K. Bertoldi, Low porosity metallic periodic structures with negative poisson's ratio, Advanced Materials, Vol. 26, No. 15, pp. 2365-2370, 2014.
[27] A. Bacigalupo, M. Lepidi, G. Gnecco, M. L. D. Bellis, A. Bacigalupo, Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors, Smart Materials and Structures, 2017.
[28] Y. Umino, T. Tsukamoto, S. Shiomi, K. Yamada, T. Suzuki, Development of vibration energy harvester with 2D mechanical metamaterial structure, Vol. 1052, pp. 3-6, 2018.
[29] T. Fey, F. Eichhorn, G. Han, K. Ebert, M. Wegener, A. Roosen, K. I. Kakimoto, P. Greil, Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure, Smart Materials and Structures, Vol. 25, No. 1, pp. 15017-15017, 2015.
[30] N. Chandrasekharan, L. L. Thompson, Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures, Vol. 25, 2016.
[31] W. J. G. Ferguson, Y. Kuang, K. E. Evans, C. W. Smith, M. Zhu, Auxetic structure for increased power output of strain vibration energy harvester, Sensors and Actuators, A: Physical, Vol. 282, No. October, pp. 90-96, 2018.
[32] P. Eghbali, D. Younesian, S. Farhangdoust, Enhancement of piezoelectric vibration energy harvesting with auxetic boosters, International Journal of Energy Research, Vol. 44, No. 2, pp. 1179-1190, 2020.
[33] P. Eghbali, D. Younesian, S. Farhangdoust, Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators, Applied Energy, Vol. 270, No. November 2019, 2020.
[34] F. Tornabene, M. Viscoti, R. Dimitri, M. A. Aiello, Higher order formulations for doubly-curved shell structures with a honeycomb core, Thin-Walled Structures, Vol. 164, No. March, pp. 107789-107789, 2021.
[35] F. Tornabene, M. Viscoti, R. Dimitri, M. Antonietta Aiello, Higher-order modeling of anisogrid composite lattice structures with complex geometries, Engineering Structures, Vol. 244, pp. 112686-112686, 2021.
[36] K. Torabi, H. Afshari, F. H. Aboutalebi, Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates, Journal of Sandwich Structures and Materials, Vol. 21, No. 8, pp. 2887-2920, 2019.
[37] S. Sorohan, D. M. Constantinescu, M. Sandu, A. G. Sandu, On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: Analytical formulation for free skin effect, Mechanics of Materials, Vol. 119, pp. 74-91, 2018.
[38] S. Stefan, S. Marin, C. Dan Mihai, S. Adriana Georgeta, On the evaluation of mechanical properties of honeycombs by using finite element analyses, Incas Bulletin, Vol. 7, No. 3, pp. 135-150, 2015.
[39] S. Malek, L. Gibson, Effective elastic properties of periodic hexagonal honeycombs, Mechanics of Materials, Vol. 91, No. P1, pp. 226-240, 2015.
[40] A. Erturk, D. J. Inman, 2011, Piezoelectric Energy Harvesting,
[41] C. F. Beards, Structural vibration analysis: Modelling, analysis and damping of vibration structures, Engineering Analysis, Vol. 1, No. 1, pp. 63-63, 1984.