Influence of Booster’s Geometry and Circuit’s Resistor on Performance of the Auxetic Energy Harvester - Experimentally Validated Analysis

Document Type : Research Paper


1 Department of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran

2 School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran


Modal and frequency response analysis of the piezoelectric energy harvester utilizing the auxetic booster has been performed in this paper. This harvester has composed of a cantilever, auxetic substrate, and piezoelectric layer. The influence of the piezoelectric’s electrical circuit and the harvester’s geometrical properties on the fundamental natural frequency, output voltage, and harvested power of the energy harvester have been investigated. The electrical circuit of this electromechanical system consists of a resistor that influences the energy harvester's output voltage and harvested power. A comprehensive parametric study has been performed to find the optimum resistor of the energy harvester. All the analysis has been performed using the finite element method. Mesh size sensitivity analysis of the models is presented, and the finite element model is verified by previous experimental studies. Furthermore, the effect of this energy harvester's damping ratio on the system's outputs has been investigated. The results show that the system's output alters considerably in different damping ratios, and it is necessary to determine the system's damping ratio of the system. The damping ratio of the auxetic energy harvester has been measured through the experimental investigation. The present study illustrates that harvested power of a trapezoidal auxetic energy harvester in resonant frequency could improve by 260 percent by utilizing the optimum resistor. Also, increasing the auxetic booster's thickness could improve the output voltage and harvested power by 48 percent and 22 percent.


Main Subjects

[1]          J. Roscow, Y. Zhang, J. Taylor, C. R. Bowen, Porous ferroelectrics for energy harvesting applications, European Physical Journal: Special Topics, Vol. 224, No. 14-15, pp. 2949-2966, 2015.
[2]          G. Martínez-Ayuso, M. I. Friswell, S. Adhikari, H. H. Khodaparast, C. A. Featherston, Energy harvesting using porous piezoelectric beam with impacts, Procedia Engineering, Vol. 199, pp. 3468-3473, 2017.
[3]          G. Martínez-Ayuso, H. Haddad Khodaparast, Y. Zhang, C. Bowen, M. Friswell, A. Shaw, H. Madinei, Model Validation of a Porous Piezoelectric Energy Harvester Using Vibration Test Data, Vibration, Vol. 1, No. 1, pp. 123-137, 2018.
[4]          Y. Liao, J. Liang, Unified modeling, analysis and comparison of piezoelectric vibration energy harvesters, Mechanical Systems and Signal Processing, Vol. 123, pp. 403-425, 2019.
[5]          Q. Li, Y. Kuang, M. Zhu, Auxetic piezoelectric energy harvesters for increased electric power output, AIP Advances, Vol. 7, No. 1, 2017.
[6]          R. Ambrosio, A. Jimenez, J. Mireles, M. Moreno, K. Monfil, H. Heredia, Study of piezoelectric energy harvesting system based on PZT, Integrated Ferroelectrics, Vol. 126, No. 1, pp. 77-86, 2011.
[7]          H. A. Sodano, D. J. Inman, G. Park, Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries, Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 799-807, 2005.
[8]          A. Erturk, D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures, Vol. 18, No. 2, pp. 025009-025009, 2009.
[9]          A. Erturk, D. J. Inman, On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters, Journal of Intelligent Material Systems and Structures, Vol. 19, No. 11, pp. 1311-1325, 2008.
[10]        A. Erturk, D. J. Inman, A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters, Journal of Vibration and Acoustics, Vol. 130, No. 4, pp. 041002-041002, 2008.
[11]        S. Adhikari, M. I. Friswell, D. J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Materials and Structures, Vol. 18, No. 11, pp. 115005-115005, 2009.
[12]        N. A. Siddiqui, D.-j. Kim, R. A. Overfelt, B. C. Prorok, W. Laboratories, M. Engineering, A. Al, Shape Optimization of Cantilevered Devices for Piezoelectric Energy Harvesting Shape Optimization of Cantilevered Devices for Piezoelectric Energy Harvesting, No. July 2014, 2015.
[13]        G. Zhang, S. Gao, H. Liu, S. Niu, A low frequency piezoelectric energy harvester with trapezoidal cantilever beam : theory and experiment, Microsystem Technologies, 2016.
[14]        N. Chen, V. Bedekar, Modeling , Simulation and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting, Vol. 6, No. 4, pp. 5-18, 2017.
[15]        M. Kim, J. Dugundji, B. L. Wardle, Efficiency of piezoelectric mechanical vibration energy harvesting, Smart Materials and Structures, Vol. 24, No. 5, pp. 55006-55006, 2015.
[16]        P. Cahill, B. Hazra, R. Karoumi, A. Mathewson, V. Pakrashi, Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage, Mechanical Systems and Signal Processing, Vol. 106, pp. 265-283, 2018.
[17]        M. Khazaee, A. Rezaniakolaie, A. Moosavian, L. Rosendahl, A novel method for autonomous remote condition monitoring of rotating machines using piezoelectric energy harvesting approach, Sensors and Actuators, A: Physical, Vol. 295, pp. 37-50, 2019.
[18]        C. Maruccio, G. Quaranta, L. D. Lorenzis, Energy harvesting from electrospun piezoelectric nano fi bers for structural health monitoring of a cable-stayed bridge, Smart Materials and Structures, Vol. 25, No. 8, pp. 1-13, 2016.
[19]        H. Li, C. Tian, Z. D. Deng, Energy harvesting from low frequency applications using piezoelectric materials, Applied Physics Reviews, Vol. 1, No. 4, 2014.
[20]        M. Mir, M. N. Ali, J. Sami, U. Ansari, Review of mechanics and applications of auxetic structures, Hindawi Publishing Corporation, 2014.
[21]        R. Hosseini, M. Babaei, A. Nadaf Oskouei, A review on structural response and energy absorption of sandwich structures with 3D printed core, Journal of Computational Applied Mechanics, 2023. en
[22]        R. Hosseini, M. Babaei, A. Naddaf, The influences of various auxetic cores on natural frequencies and forced vibration behavior of sandwich beam fabricated by 3D printer based on third -order shear deformation theory, Vol. 54, No. 2, pp. 285-308, 2023.
[23]        M. Babaei, M. H. Hajmohammad, K. Asemi, Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity, Aerospace Science and Technology, Vol. 96, pp. 105524-105524, 2020.
[24]        M. Babaei, F. Kiarasi, K. Asemi, R. Dimitri, F. Tornabene, Transient Thermal Stresses in FG Porous Rotating Truncated Cones Reinforced by Graphene Platelets, 12, 2022].
[25]        M. Babaei, F. Kiarasi, K. Asemi, M. Hosseini, Functionally graded saturated porous structures: A review, Journal of Computational Applied Mechanics, Vol. 53, No. 2, pp. 297-308, 2022.
[26]        M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, K. Bertoldi, Low porosity metallic periodic structures with negative poisson's ratio, Advanced Materials, Vol. 26, No. 15, pp. 2365-2370, 2014.
[27]        A. Bacigalupo, M. Lepidi, G. Gnecco, M. L. D. Bellis, A. Bacigalupo, Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors, Smart Materials and Structures, 2017.
[28]        Y. Umino, T. Tsukamoto, S. Shiomi, K. Yamada, T. Suzuki, Development of vibration energy harvester with 2D mechanical metamaterial structure, Vol. 1052, pp. 3-6, 2018.
[29]        T. Fey, F. Eichhorn, G. Han, K. Ebert, M. Wegener, A. Roosen, K. I. Kakimoto, P. Greil, Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure, Smart Materials and Structures, Vol. 25, No. 1, pp. 15017-15017, 2015.
[30]        N. Chandrasekharan, L. L. Thompson, Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures, Vol. 25, 2016.
[31]        W. J. G. Ferguson, Y. Kuang, K. E. Evans, C. W. Smith, M. Zhu, Auxetic structure for increased power output of strain vibration energy harvester, Sensors and Actuators, A: Physical, Vol. 282, No. October, pp. 90-96, 2018.
[32]        P. Eghbali, D. Younesian, S. Farhangdoust, Enhancement of piezoelectric vibration energy harvesting with auxetic boosters, International Journal of Energy Research, Vol. 44, No. 2, pp. 1179-1190, 2020.
[33]        P. Eghbali, D. Younesian, S. Farhangdoust, Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators, Applied Energy, Vol. 270, No. November 2019, 2020.
[34]        F. Tornabene, M. Viscoti, R. Dimitri, M. A. Aiello, Higher order formulations for doubly-curved shell structures with a honeycomb core, Thin-Walled Structures, Vol. 164, No. March, pp. 107789-107789, 2021.
[35]        F. Tornabene, M. Viscoti, R. Dimitri, M. Antonietta Aiello, Higher-order modeling of anisogrid composite lattice structures with complex geometries, Engineering Structures, Vol. 244, pp. 112686-112686, 2021.
[36]        K. Torabi, H. Afshari, F. H. Aboutalebi, Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates, Journal of Sandwich Structures and Materials, Vol. 21, No. 8, pp. 2887-2920, 2019.
[37]        S. Sorohan, D. M. Constantinescu, M. Sandu, A. G. Sandu, On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: Analytical formulation for free skin effect, Mechanics of Materials, Vol. 119, pp. 74-91, 2018.
[38]        S. Stefan, S. Marin, C. Dan Mihai, S. Adriana Georgeta, On the evaluation of mechanical properties of honeycombs by using finite element analyses, Incas Bulletin, Vol. 7, No. 3, pp. 135-150, 2015.
[39]        S. Malek, L. Gibson, Effective elastic properties of periodic hexagonal honeycombs, Mechanics of Materials, Vol. 91, No. P1, pp. 226-240, 2015.
[40]        A. Erturk, D. J. Inman, 2011, Piezoelectric Energy Harvesting,
[41]        C. F. Beards, Structural vibration analysis: Modelling, analysis and damping of vibration structures, Engineering Analysis, Vol. 1, No. 1, pp. 63-63, 1984.
Volume 54, Issue 4
December 2023
Pages 467-481
  • Receive Date: 30 May 2023
  • Revise Date: 03 August 2023
  • Accept Date: 04 August 2023