[1] R. K. Joshi, H. Gomez, F. Alvi, A. Kumar, Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions, The Journal of Physical Chemistry C, Vol. 114, No. 14, pp. 6610-6613, 2010.
[2] Q. Liang, J. Dong, Superconducting switch made of graphene–nanoribbon junctions, Nanotechnology, Vol. 19, No. 35, pp. 355706, 2008.
[3] M. Liu, Y.-E. Miao, C. Zhang, W. W. Tjiu, Z. Yang, H. Peng, T. Liu, Hierarchical composites of polyaniline–graphene nanoribbons–carbon nanotubes as electrode materials in all-solid-state supercapacitors, Nanoscale, Vol. 5, No. 16, pp. 7312-7320, 2013.
[4] M. A. Rafiee, W. Lu, A. V. Thomas, A. Zandiatashbar, J. Rafiee, J. M. Tour, N. A. Koratkar, Graphene nanoribbon composites, ACS nano, Vol. 4, No. 12, pp. 7415-7420, 2010.
[5] R. J. Young, I. A. Kinloch, L. Gong, K. S. Novoselov, The mechanics of graphene nanocomposites: a review, Composites Science and Technology, Vol. 72, No. 12, pp. 1459-1476, 2012.
[6] H. Kim, A. A. Abdala, C. W. Macosko, Graphene/polymer nanocomposites, Macromolecules, Vol. 43, No. 16, pp. 6515-6530, 2010.
[7] J. L. Johnson, A. Behnam, S. Pearton, A. Ural, Hydrogen sensing using Pd‐functionalized multi‐layer graphene nanoribbon networks, Advanced materials, Vol. 22, No. 43, pp. 4877-4880, 2010.
[8] J. W. Kang, S. Lee, Molecular dynamics study on the bending rigidity of graphene nanoribbons, Computational Materials Science, Vol. 74, pp. 107-113, 2013.
[9] R. Faccio, P. A. Denis, H. Pardo, C. Goyenola, A. W. Mombrú, Mechanical properties of graphene nanoribbons, Journal of Physics: Condensed Matter, Vol. 21, No. 28, pp. 285304, 2009.
[10] A. C. Eringen, J. Wegner, Nonlocal continuum field theories, Appl. Mech. Rev., Vol. 56, No. 2, pp. B20-B22, 2003.
[11] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[12] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International journal of engineering science, Vol. 45, No. 2-8, pp. 288-307, 2007.
[13] A. I. Aria, M. Friswell, A nonlocal finite element model for buckling and vibration of functionally graded nanobeams, Composites Part B: Engineering, Vol. 166, pp. 233-246, 2019.
[14] Ö. Civalek, Ç. Demir, B. Akgöz, Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model, Mathematical and Computational Applications, Vol. 15, No. 2, pp. 289-298, 2010.
[15] M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, No. 9, pp. 1651-1655, 2009.
[16] T. Aksencer, M. Aydogdu, Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 4, pp. 954-959, 2011.
[17] W. Duan, C. M. Wang, Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory, Nanotechnology, Vol. 18, No. 38, pp. 385704, 2007.
[18] T. Murmu, S. Pradhan, Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, No. 8, pp. 1628-1633, 2009.
[19] T. Murmu, J. Sienz, S. Adhikari, C. Arnold, Nonlocal buckling of double-nanoplate-systems under biaxial compression, Composites Part B: Engineering, Vol. 44, No. 1, pp. 84-94, 2013.
[20] R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A, Vol. 375, No. 1, pp. 53-62, 2010.
[21] R. Li, G. A. Kardomateas, Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model, 2007.
[22] F. Khademolhosseini, R. Rajapakse, A. Nojeh, Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models, Computational materials science, Vol. 48, No. 4, pp. 736-742, 2010.
[23] J. Peddieson, G. R. Buchanan, R. P. McNitt, Application of nonlocal continuum models to nanotechnology, International journal of engineering science, Vol. 41, No. 3-5, pp. 305-312, 2003.
[24] H. Ersoy, K. Mercan, Ö. Civalek, Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods, Composite Structures, Vol. 183, pp. 7-20, 2018.
[25] Ö. Civalek, Ç. Demir, Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Applied Mathematical Modelling, Vol. 35, No. 5, pp. 2053-2067, 2011.
[26] S. Shaw, P. Murthy, S. Pradhan, The effect of body acceleration on two dimensional flow of Casson fluid through an artery with asymmetric stenosis, The Open Conservation Biology Journal, Vol. 2, No. 1, 2010.
[27] J. Fernández-Sáez, R. Zaera, J. Loya, J. Reddy, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved, International Journal of Engineering Science, Vol. 99, pp. 107-116, 2016.
[28] C. Li, L. Yao, W. Chen, S. Li, Comments on nonlocal effects in nano-cantilever beams, International Journal of Engineering Science, Vol. 87, pp. 47-57, 2015.
[29] M. Tuna, M. Kirca, Exact solution of Eringen's nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams, International Journal of Engineering Science, Vol. 105, pp. 80-92, 2016.
[30] M. Tuna, M. Kirca, Exact solution of Eringen's nonlocal integral model for vibration and buckling of Euler–Bernoulli beam, International Journal of Engineering Science, Vol. 107, pp. 54-67, 2016.
[31] Y. Wang, X. Zhu, H. Dai, Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model, Aip Advances, Vol. 6, No. 8, pp. 085114, 2016.
[32] J. Fernández-Sáez, R. Zaera, Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, International Journal of Engineering Science, Vol. 119, pp. 232-248, 2017.
[33] X. Zhu, Y. Wang, H.-H. Dai, Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model, International Journal of Engineering Science, Vol. 116, pp. 130-140, 2017.
[34] K. Eptaimeros, C. C. Koutsoumaris, G. Tsamasphyros, Nonlocal integral approach to the dynamical response of nanobeams, International Journal of Mechanical Sciences, Vol. 115, pp. 68-80, 2016.
[35] K. Eptaimeros, C. C. Koutsoumaris, I. Dernikas, T. Zisis, Dynamical response of an embedded nanobeam by using nonlocal integral stress models, Composites Part B: Engineering, Vol. 150, pp. 255-268, 2018.
[36] A. Anjomshoa, B. Hassani, On the importance of proper kernel normalization procedure in nonlocal integral continuum modeling of nanobeams, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 101, No. 10, pp. e202000126, 2021.
[37] L. Shen, H.-S. Shen, C.-L. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Computational Materials Science, Vol. 48, No. 3, pp. 680-685, 2010.
[38] A. Shakouri, T. Ng, R. Lin, A study of the scale effects on the flexural vibration of graphene sheets using REBO potential based atomistic structural and nonlocal couple stress thin plate models, Physica E: Low-dimensional Systems and Nanostructures, Vol. 50, pp. 22-28, 2013.
[39] S. B. Altan, Uniqueness of initial-boundary value problems in nonlocal elasticity, International journal of solids and structures, Vol. 25, No. 11, pp. 1271-1278, 1989.
[40] G. Borino, B. Failla, F. Parrinello, A symmetric nonlocal damage theory, International Journal of Solids and Structures, Vol. 40, No. 13-14, pp. 3621-3645, 2003.
[41] Z. P. Bažant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress, Journal of engineering mechanics, Vol. 128, No. 11, pp. 1119-1149, 2002.
[42] S. Chakraverty, L. Behera, Free vibration of non-uniform nanobeams using Rayleigh–Ritz method, Physica E: Low-dimensional Systems and Nanostructures, Vol. 67, pp. 38-46, 2015.
[43] Q. Wang, C. Wang, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology, Vol. 18, No. 7, pp. 075702, 2007.
[44] A. Shakouri, T. Ng, R. Lin, A new REBO potential based atomistic structural model for graphene sheets, Nanotechnology, Vol. 22, No. 29, pp. 295711, 2011.