[1] C. C. Ike, B. O. Mama, H. N. Onah, C. U. Nwoji, Trefftz displacement potential function method for solving elastic half-space problems, Civil Engineering and Architecture, Vol. 9, No. 3, pp. 559-583, 2021.
[2] M. E. Onyia, E. O. Rowland-Lato, C. C. Ike, Elastic buckling analysis of SSCF and SSSS rectangular thin plates using the single finite fourier sine integral transform method, International Journal of Engineering Research and Technology, Vol. 13, No. 6, pp. 1147-1158, 2020.
[3] M. E. Onyia, E. O. Rowland-Lato, C. C. Ike, Galerkin-Kantorovich method for the elastic buckling analysis of thin rectangular SCSC plates, International Journal of Engineering Research and Technology, Vol. 13, No. 4, pp. 613-619, 2020.
[4] M. E. Onyia, E. O. Rowland-Lato, C. C. Ike, Galerkin-Vlasov variational method for the elastic buckling analysis of SSCF and SSSS rectangular plates, International Journal of Engineering Research and Technology, Vol. 13, No. 6, pp. 1137-1146, 2020.
[5] C. C. Ike, B. O. Mama, Kantorovich variational method for the flexural analysis of CSCS Kirchhoff-Love plates, Mathematical Models in Engineering, Vol. 4, No. 1, pp. 29-41, 2018.
[6] C. U. Nwoji, B. O. Mama, H. N. Onah, C. C. Ike, Flexural analysis of simply supported rectangular Mindlin plates under bisinusoidal transverse load, ARPN Journal of Engineering and Applied Sciences, Vol. 13, No. 15, pp. 4480-4488, 2018.
[7] B. O. Mama, C. C. Ike, C. U. Nwoji, H. N. Onah, Advances in Modelling and Analysis A,
Journal homepage: http://iieta. org/Journals/AMA/AMA_A, Vol. 55, No. 2, pp. 76-81, 2018.
[8] C. U. Nwoji, H. N. Onah, B. O. Mama, C. C. Ike, M. E. Abd El Hady, A. M. Youssef, A. M. Bayoumy, Y. Z. Elhalwagy, X. Wang, G. Ren, Ritz variational method for bending of rectangular Kirchhoff plate under transverse hydrostatic load distribution, Mathematical Modelling of Engineering Problems, Vol. 5, No. 1, pp. 1-10, 2018.
[9] C. Ike, Flexural analysis of rectangular kirchhoff plate on winkler foundation using galerkin-vlasov variational method, Mathematical Modelling of Engineering Problems, Vol. 5, No. 2, pp. 83-92, 2018.
[10] C. Nwoji, B. Mama, C. Ike, H. Onah, Galerkin-Vlasov method for the flexural analysis of rectangular Kirchhoff plates with clamped and simply supported edges, IOSR Journal of Mechanical and Civil Engineering, Vol. 14, No. 2, pp. 61-74, 2017.
[11] B. Mama, C. Ike, H. Onah, C. Nwoji, Analysis of rectangular Kirchhoff plate on Winkler foundation using finite Fourier sine transform method, IOSR Journal of Mathematics, Vol. 13, No. 4, pp. 58-66, 2017.
[12] C. Nwoji, B. Mama, H. Onah, C. Ike, Kantorovich-vlasov method for simply supported rectangular plates under uniformly distributed transverse loads, methods, Vol. 14, No. 15, pp. 16, 2017.
[13] B. Mama, C. Nwoji, C. Ike, H. Onah, Analysis of simply supported rectangular Kirchhoff plates by the finite Fourier sine transform method, International Journal of Advanced Engineering Research and Science, Vol. 4, No. 3, pp. 237109, 2017.
[14] C. C. Ike, Flexural analysis of Kirchhoff plates on Winkler foundations using finite Fourier sine integral transform method, Mathematical Modelling of Engineering Problems (MMEP), Vol. 4, No. 4, pp. 145-154, 2017.
[15] C. Ike, Kantorovich-Euler lagrange-galerkin’s method for bending analysis of thin plates, Nigerian Journal of Technology, Vol. 36, No. 2, pp. 351-360, 2017.
[16] B. Mama, H. Onah, C. Ike, N. Osadebe, Solution of free harmonic vibration equation of simply supported Kirchhoff plate by Galerkin-Vlasov method, Nigerian Journal of Technology, Vol. 36, No. 2, pp. 361-365, 2017.
[17] C. Ike, C. Nwoji, Kantorovich method for the determination of eigen frequencies of thin rectangular plates, Explorematics Journal of Innovative engineering and Technology (EJIET), Vol. 1, No. 01, pp. 20-27, 2017.
[18] C. Ike, C. Nwoji, E. Ikwueze, I. Ofondu, Bending analysis of simply supported rectangular Kirchhoff plates under linearly distributed transverse load, Explorematics Journal of Innovative Engineering and Technology (EJIET), Vol. 1, No. 01, pp. 28-36, 2017.
[19] N. Osadebe, C. Ike, H. Onah, C. Nwoji, F. Okafor, Application of the Galerkin-Vlasov method to the Flexural Analysis of simply supported Rectangular Kirchhoff Plates under uniform loads, Nigerian Journal of Technology, Vol. 35, No. 4, pp. 732-738, 2016.
[20] C. C. Ikea, Generalized Integral Transform Method for bending and buckling analysis of rectangular thin plate with two opposite edges simply supported and other edges clamped.
[21] G. C. Tsiatas, M. N. Pavlović, Thin rectangular plates under axial point loading: Accuracy of the classical single Fourier series solution for stresses, in Proceeding of, Elsevier, pp. 3757-3764.
[22] R. Shimpi, H. Patel, A two variable refined plate theory for orthotropic plate analysis, International Journal of Solids and Structures, Vol. 43, No. 22-23, pp. 6783-6799, 2006.
[23] Y. M. Ghugal, P. D. Gajbhiye, Bending analysis of thick isotropic plates by using 5th order shear deformation theory, Journal of Applied and Computational Mechanics, Vol. 2, No. 2, pp. 80-95, 2016.
[24] Y. M. Ghugal, A. S. Sayyad, A static flexure of thick isotropic plates using trigonometric shear deformation theory, Journal of Solid Mechanics, Vol. 2, No. 1, pp. 79-90, 2010.
[25] C. Shuang, Symplectic elasticity approach for exact bending solutions of rectangular thin plates, City University of Hong Kong, Hong Kong, 2007.
[26] B. Wang, P. Li, R. Li, Symplectic superposition method for new analytic buckling solutions of rectangular thin plates, International Journal of Mechanical Sciences, Vol. 119, pp. 432-441, 2016.
[27] C. W. Lim, C. Lü, Y. Xiang, W. Yao, On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates, International Journal of Engineering Science, Vol. 47, No. 1, pp. 131-140, 2009.
[28] C. W. Lim, S. Cui, W. Yao, On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported, International journal of solids and structures, Vol. 44, No. 16, pp. 5396-5411, 2007.
[29] Y. Zhong, R. Li, Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach, Mechanics Research Communications, Vol. 36, No. 6, pp. 707-714, 2009.
[30] X. Qian, Z. Jinghui, S. Ullah, Z. Yang, G. Litao, Analytical bending solutions of thin plates by two‐dimensional generalized integral transform method, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 101, No. 6, pp. e202000246, 2021.
[31] Q. Xu, Z. Yang, S. Ullah, Z. Jinghui, Y. Gao, Analytical bending solutions of orthotropic rectangular thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method, Advances in Civil Engineering, Vol. 2020, 2020.
[32] C. Aginam, C. Chidolue, C. Ezeagu, Application of direct variational method in the analysis of isotropic thin rectangular plates, ARPN Journal of Engineering and Applied Sciences, Vol. 7, No. 9, pp. 1128-1138, 2012.
[33] F. Onyeka, B. Mama, Analytical study of bending characteristics of an elastic rectangular plate using direct variational energy approach with trigonometric function, Emerging Science Journal, Vol. 5, No. 6, pp. 916-926, 2021.
[34] F. Onyeka, T. Okeke, B. Mama, Static Elastic Bending Analysis of a Three-Dimensional Clamped Thick Rectangular Plate using Energy Method, HighTech and Innovation Journal, Vol. 3, No. 3, pp. 267-281, 2022.
[35] F. Mbakogu, M. Pavlović, Bending of clamped orthotropic rectangular plates: a variational symbolic solution, Computers & Structures, Vol. 77, No. 2, pp. 117-128, 2000.
[36] T. H. Evans, Tables of moments and deflections for a rectangular plate fixed on all edges and carrying a uniformly distributed load, 1939.
[37] D. Young, Analysis of clamped rectangular plates, 1940.
[38] Y. Khan, P. Tiwari, R. Ali, Application of variational methods to a rectangular clamped plate problem, Computers & Mathematics with Applications, Vol. 63, No. 4, pp. 862-869, 2012.
[39] O. Sadiq, M. Sobamowo, S. Salawu, Nonlinear dynamic behaviour of functionally graded circular plates resting on two-parameters foundation using differential transform method, in Proceeding of, IOP Publishing, pp. 012114.
[40] O. Sadiq, G. Sobamowo, S. Salawu, Analytical approach to investigation of free vibration of thin rectangular plate immersed in fluid, resting on Winkler and Pasternak foundations, Karbala International Journal of Modern Science, Vol. 5, No. 3, pp. 2, 2019.
[41] S. Salawu, G. Sobamowo, O. Sadiq, INVESTIGATION OF THE DYNAMIC BEHAVIOUR OF NON-UNIFORM THICKNESS CIRCULAR PLATES RESTING ON WINKLER AND PASTERNAK FOUNDATIONS, Acta Polytechnica, Vol. 60, No. 2, pp. 127-144, 2020.
[42] S. A. Salawu, G. M. Sobamowo, O. M. Sadiq, Forced Vibration Analysis of Isotropic Thin Circular Plate Resting on Nonlinear Viscoelastic Foundation, Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 44, No. 1, pp. 277-288, 2020.
[43] S. A. Salawu, G. M. Sobamowo, O. M. Sadiq, Investigation of dynamic behaviour of circular plates resting on Winkler and Pasternak foundations, SN Applied Sciences, Vol. 1, No. 12, pp. 1-12, 2019.
[44] Ş. D. AKBAŞ, Stability of a non-homogenous porous plate by using generalized differantial quadrature method, International Journal of Engineering and Applied Sciences, Vol. 9, No. 2, pp. 147-155, 2017.
[45] Ş. D. Akbaş, Vibration and static analysis of functionally graded porous plates, Journal of Applied and Computational Mechanics, 2017.
[46] Ş. AKBAŞ, Static analysis of a nano plate by using generalized differential quadrature method, International Journal of Engineering and Applied Sciences, Vol. 8, No. 2, pp. 30-39, 2016.
[47] Y. Z. YÜKSEL, Ş. D. AKBAŞ, Vibration Analysis of a Sandwich Plate with Laminated Face and Porous Core Layers Resting on Elastic Foundation, Journal of Innovative Science and Engineering, Vol. 6, No. 1, pp. 32-45, 2022.
[48] Y. Yuksel, S. Akbas, Hygrothermal stress analysis of laminated composite porous plates, Structural Engineering and Mechanics, Vol. 80, No. 1, pp. 1-13, 2021.
[49] Y. Z. Yüksel, Ş. D. Akbaş, Buckling analysis of a fiber reinforced laminated composite plate with porosity, Journal of Computational Applied Mechanics, Vol. 50, No. 2, pp. 375-380, 2019.
[50] Y. Z. YÜKSEL, Ş. D. AKBAŞ, Free vibration analysis of a cross-ply laminated plate in thermal environment, International Journal of Engineering and Applied Sciences, Vol. 10, No. 3, pp. 176-189, 2018.
[51] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[52] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[53] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[54] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[55] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[56] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[57] A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[58] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[59] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[60] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[61] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[62] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[63] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[65] M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in
Proceeding of, https://civilica.com/doc/540946/, pp.
[67] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[68] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[69] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[70] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[71] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[72] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[73] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[74] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[75] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[76] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[77] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[78] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[79] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[80] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[81] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[82] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[83] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[84] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[85] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[86] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[88] M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[89] M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[90] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[91] N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[92] M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, Structural engineering and mechanics: An international journal, Vol. 67, No. 4, pp. 417-425, 2018.
[93] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
[94] A. Hadi, A. Daneshmehr, S. N. Mehrian, M. Hosseini, F. Ehsani, Elastic analysis of functionally graded Timoshenko beam subjected to transverse loading, Technical Journal of Engineering and Applied Sciences, Vol. 3, No. 13, pp. 1246-1254, 2013.
[95] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam,
Acta Mechanica,
https://doi.org/10.1007/s00707-022-03430-0, 2023.
[96] S. Timoshenko, S. Woinowsky-Krieger, 1959, Theory of plates and shells, McGraw-hill New York,
[97] R. L. Taylor, S. Govindjee, Solution of clamped rectangular plate problems, Communications in numerical methods in engineering, Vol. 20, No. 10, pp. 757-765, 2004.
[98] C. E. Imrak, I. Gerdemeli, The problem of isotropic rectangular plate with four clamped edges, Sadhana, Vol. 32, No. 3, pp. 181-186, 2007.