Multilayer Hydrogel Seals: Numerical Study of Elastic Leak

Document Type : Research Paper

Authors

Mechanical Engineering Faculty, University of Kashan

Abstract

Utilizing hydrogels for sealing devices has attracted the attention of researchers in both academia and industry. The main reason for this attraction is the ability of these materials to absorb surrounding fluid and swelling and the subsequent sealing of the desired portion without any external manipulation. Investigation of the behavior of these materials when implemented as seals is of major importance. This paper studies a rectangular multilayer hydrogel with different material properties numerically by using thermo-mechanical coupled constitutive models available in the literature. Leakage models of elastomeric seals were implemented to examine the leakage of these seals under the pressure of the fluid. The methods are validated through comparison with experiments benchmarked in the literature. After modeling the seals, the mechanism of leakage is investigated, and parameter study of seals considering the cross-linking density distribution of multilayer hydrogel is presented. The findings showed that the ascending and descending property distributions in the studied multilayer hydrogel have a considerable effect on sealing behavior, providing the researchers with an accurate vision of designing such seals.

Keywords

Main Subjects

[1]          J. Wu, Z.-G. Su, G.-H. Ma, A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate, International journal of pharmaceutics, Vol. 315, No. 1-2, pp. 1-11, 2006.
[2]          A. Suzuki, S. Yoshikawa, G. Bai, Shrinking pattern and phase transition velocity of poly (N-isopropylacrylamide) gel, The Journal of chemical physics, Vol. 111, No. 1, pp. 360-367, 1999.
[3]          D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B.-H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, Vol. 404, No. 6778, pp. 588-590, 2000.
[4]          D. T. Eddington, D. J. Beebe, Flow control with hydrogels, Advanced drug delivery reviews, Vol. 56 2, pp. 199-210, 2004.
[5]          Y. Zhang, Z. Liu, S. Swaddiwudhipong, H. Miao, Z. Ding, Z. Yang, pH-sensitive hydrogel for micro-fluidic valve, Journal of Functional Biomaterials, Vol. 3, No. 3, pp. 464-479, 2012.
[6]          W. Toh, T. Y. Ng, J. Hu, Z. Liu, Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels, International Journal of Solids and Structures, Vol. 51, No. 25-26, pp. 4440-4451, 2014.
[7]          H. Mazaheri, A. H. Namdar, A. Ghasemkhani, A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels, Acta Mechanica, pp. 1-18, 2021.
[8]          H. Mazaheri, A. Ghasemkhani, A. Namdar, Behavior of photo-thermal sensitive polyelectrolyte hydrogel micro-valve: analytical and numerical approaches, Journal of Stress Analysis, Vol. 5, No. 1, pp. 21-30, 2020.
[9]          W. Shi, J. Huang, R. Fang, M. Liu, Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response, ACS applied materials & interfaces, Vol. 12, No. 5, pp. 5177-5194, 2020.
[10]        M. N. Hsu, S. C. Wei, S. Guo, D. T. Phan, Y. Zhang, C. H. Chen, Smart hydrogel microfluidics for single‐cell multiplexed secretomic analysis with high sensitivity, Small, Vol. 14, No. 49, pp. 1802918, 2018.
[11]        Q. Liu, Z. Wang, Y. Lou, Z. Suo, Elastic leak of a seal, Extreme Mechanics Letters, Vol. 1, pp. 54-61, 2014.
[12]        R. Geryak, V. V. Tsukruk, Reconfigurable and actuating structures from soft materials, Soft Matter, Vol. 10, No. 9, pp. 1246-1263, 2014.
[13]        H. Banerjee, M. Suhail, H. Ren, Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges, Biomimetics, Vol. 3, No. 3, pp. 15, 2018.
[14]        B. Chen, C. Chen, Y. Lou, Z. Suo, Strain-stiffening seal, Soft Matter, Vol. 18, No. 15, pp. 2992-3003, 2022.
[15]        H. Mazaheri, A. Khodabandehloo, FSI and non-FSI studies on a functionally graded temperature-responsive hydrogel bilayer in a micro-channel, Smart Materials and Structures, 2021.
[16]        A. Ghasemkhani, H. Mazaheri, A. Amiri, Fluid-structure interaction simulations for a temperature-sensitive functionally graded hydrogel-based micro-channel, Journal of Intelligent Material Systems and Structures, Vol. 32, No. 6, pp. 661-677, 2021.
[17]        H. Mazaheri, A. Ghasemkhani, S. Sabbaghi, Study of Fluid–Structure Interaction in a Functionally Graded pH-Sensitive Hydrogel Micro-Valve, International Journal of Applied Mechanics, Vol. 12, No. 05, pp. 2050057, 2020.
[18]        H. Mazaheri, A. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, Journal of Intelligent Material Systems and Structures, Vol. 29, No. 20, pp. 3960-3971, 2018.
[19]        H. Mazaheri, A. Khodabandehloo, Behavior of an FG temperature-responsive hydrogel bilayer: Analytical and numerical approaches, Composite Structures, Vol. 301, pp. 116203, 2022/12/01/, 2022.
[20]        M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[21]        M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[22]        M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam, Acta Mechanica, https://doi.org/10.1007/s00707-022-03430-0, 2023.
[23]        M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[24]        M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[25]        A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[26]        A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[27]        A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[28]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[29]        M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[30]        M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[31]        M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[32]        H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[33]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[34]        M. Goodarzi, M. Mohammadi, A. Gharib, Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran, in Proceeding of, https://publications.waset.org/abstracts/33008/techno-economic-analysis-of …, pp.
[35]        M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in Proceeding of, https://civilica.com/doc/540946/, pp.
[36]        M. Goodarzi, M. Mohammadi, M. Rezaee, Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran, in Proceeding of, https://publications.waset.org/abstracts/18930/technical-feasibility …, pp.
[37]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[38]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[39]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[40]        M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[41]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[42]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[43]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[44]        S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[45]        S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[46]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[47]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[48]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[49]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[50]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[51]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[52]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[53]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[54]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[55]        H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[56]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[57]        A. Farajpour, M. Mohammadi, M. Ghayour, Shear buckling of rectangular nanoplates embedded in elastic medium based on nonlocal elasticity theory, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_390.html, pp. 390.
[58]        M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[59]        M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[60]        M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[61]        N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[62]        N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Advanced Materials, Vol. 18, No. 11, pp. 1345-1360, 2006.
[63]        R. Noroozi, M. A. Shamekhi, R. Mahmoudi, A. Zolfagharian, F. Asgari, A. Mousavizadeh, M. Bodaghi, A. Hadi, N. Haghighipour, In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel, Biomedical Materials, Vol. 17, No. 4, pp. 045024, 2022/06/22, 2022.
[64]        G. Chan, D. J. Mooney, New materials for tissue engineering: towards greater control over the biological response, Trends in biotechnology, Vol. 26, No. 7, pp. 382-392, 2008.
[65]        R. Noroozi, F. Tatar, A. Zolfagharian, R. Brighenti, M. A. Shamekhi, A. Rastgoo, A. Hadi, M. Bodaghi, Additively manufactured multi-morphology bone-like porous scaffolds: experiments and micro-computed tomography-based finite element modeling approaches, International Journal of Bioprinting, Vol. 8, No. 3, pp. 40-53, 2022.
[66]        Z. U. Arif, M. Y. Khalid, R. Noroozi, A. Sadeghianmaryan, M. Jalalvand, M. Hossain, Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications, International Journal of Biological Macromolecules, 2022.
[67]        B. Druecke, E. Dussan V, N. Wicks, A. Hosoi, Large elastic deformation as a mechanism for soft seal leakage, Journal of Applied Physics, Vol. 117, No. 10, pp. 104511, 2015.
[68]        S. K. S. Kambhammettu, L. R. Chebolu, A. P. Deshpande, A wedge penetration model to estimate leak through elastomer–metal interface, International Journal of Advances in Engineering Sciences and Applied Mathematics, Vol. 12, No. 1, pp. 65-72, 2020.
[69]        T. T. Hailey Jr, R. Freyer, Well tools with actuators utilizing swellable materials, Google Patents, 2013.
[70]        J. Kluge, B. Jansen, A. Lutz, D. K. De, W. S. Butterfield, P. Williamson, Downwell system with activatable swellable packer, Google Patents, 2009.
[71]        S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, Journal of the Mechanics and Physics of Solids, Vol. 59, No. 11, pp. 2259-2278, 2011.
[72]        S. A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, Journal of the Mechanics and Physics of Solids, Vol. 58, No. 11, pp. 1879-1906, 2010.
[73]        H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study, Smart Materials and Structures, Vol. 24, No. 4, pp. 045004, 2015.
[74]        A. Drozdov, J. deClaville Christiansen, Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling, Acta Mechanica, Vol. 229, No. 12, pp. 5067-5092, 2018.
[75]        W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, pp. 1779-1793, 2008.
[76]        P. J. Flory, J. Rehner Jr, Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity, The journal of chemical physics, Vol. 11, No. 11, pp. 512-520, 1943.
[77]        P. J. Flory, Thermodynamics of high polymer solutions, The Journal of chemical physics, Vol. 10, No. 1, pp. 51-61, 1942.
[78]        M. L. Huggins, Some properties of solutions of long-chain compounds, The Journal of Physical Chemistry, Vol. 46, No. 1, pp. 151-158, 1942.
[79]        Y. Lou, S. Chester, Kinetics of swellable packers under downhole conditions, International Journal of Applied Mechanics, Vol. 6, No. 06, pp. 1450073, 2014.
[80]        Q. Liu, A. Robisson, Y. Lou, Z. Suo, Kinetics of swelling under constraint, Journal of Applied Physics, Vol. 114, No. 6, pp. 064901, 2013.
[81]        Z. Wang, C. Chen, Q. Liu, Y. Lou, Z. Suo, Extrusion, slide, and rupture of an elastomeric seal, Journal of the Mechanics and Physics of Solids, Vol. 99, pp. 289-303, 2017.
[82]        Y. Lou, A. Robisson, S. Cai, Z. Suo, Swellable elastomers under constraint, Journal of Applied Physics, Vol. 112, No. 3, pp. 034906, 2012.
[83]        N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. M. Mashhadi, Finite bending of bilayer pH-responsive hydrogels: a novel analytic method and finite element analysis, Composites Part B: Engineering, Vol. 110, pp. 116-123, 2017.
[84]        J. Abdolahi, M. Baghani, N. Arbabi, H. Mazaheri, Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis, Composite Structures, Vol. 164, pp. 219-228, 2017/03/15/, 2017.
[85]        H. Mazaheri, A. Ghasemkhani, Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell, Journal of Stress Analysis, Vol. 3, No. 2, pp. 29-35, 2019.
[86]        a. h. namdar, Kinetics of swelling of cylindrical functionally graded temperature-responsive hydrogels, Journal of Computational Applied Mechanics, Vol. 51, No. 2, pp. 464-471, 2020.
[87]        A. Khodabandehloo, H. Mazaheri, Analytic and Finite Element Studies on Deformation of Bilayers with a Functionally Graded PH-Responsive Hydrogel Layer, International Journal of Applied Mechanics, Vol. 0, No. 0, pp. 2250053.
[88]        H. Mazaheri, K. Soleymani, A. Ghasemkhani, An Analytical Solution and FEM Simulation for the Behavior of Sensitive FG micro-valve in Response to pH Stimuli, Journal of Stress Analysis, Vol. 6, No. 1, pp. -, 2021.
[89]        A. H. Namdar, H. Mazaheri, Kinetics of swelling of cylindrical temperature-responsive hydrogel: a semi-analytical study, International Journal of Applied Mechanics, Vol. 12, No. 08, pp. 2050090, 2020.
[90]        W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, International Journal of Solids and Structures, Vol. 46, No. 17, pp. 3282-3289, 2009.
Volume 53, Issue 4
December 2022
Pages 626-638
  • Receive Date: 29 August 2022
  • Revise Date: 04 October 2022
  • Accept Date: 08 October 2022