[1] J. Wu, Z.-G. Su, G.-H. Ma, A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate, International journal of pharmaceutics, Vol. 315, No. 1-2, pp. 1-11, 2006.
[2] A. Suzuki, S. Yoshikawa, G. Bai, Shrinking pattern and phase transition velocity of poly (N-isopropylacrylamide) gel, The Journal of chemical physics, Vol. 111, No. 1, pp. 360-367, 1999.
[3] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B.-H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, Vol. 404, No. 6778, pp. 588-590, 2000.
[4] D. T. Eddington, D. J. Beebe, Flow control with hydrogels, Advanced drug delivery reviews, Vol. 56 2, pp. 199-210, 2004.
[5] Y. Zhang, Z. Liu, S. Swaddiwudhipong, H. Miao, Z. Ding, Z. Yang, pH-sensitive hydrogel for micro-fluidic valve, Journal of Functional Biomaterials, Vol. 3, No. 3, pp. 464-479, 2012.
[6] W. Toh, T. Y. Ng, J. Hu, Z. Liu, Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels, International Journal of Solids and Structures, Vol. 51, No. 25-26, pp. 4440-4451, 2014.
[7] H. Mazaheri, A. H. Namdar, A. Ghasemkhani, A model for inhomogeneous large deformation of photo-thermal sensitive hydrogels, Acta Mechanica, pp. 1-18, 2021.
[8] H. Mazaheri, A. Ghasemkhani, A. Namdar, Behavior of photo-thermal sensitive polyelectrolyte hydrogel micro-valve: analytical and numerical approaches, Journal of Stress Analysis, Vol. 5, No. 1, pp. 21-30, 2020.
[9] W. Shi, J. Huang, R. Fang, M. Liu, Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response, ACS applied materials & interfaces, Vol. 12, No. 5, pp. 5177-5194, 2020.
[10] M. N. Hsu, S. C. Wei, S. Guo, D. T. Phan, Y. Zhang, C. H. Chen, Smart hydrogel microfluidics for single‐cell multiplexed secretomic analysis with high sensitivity, Small, Vol. 14, No. 49, pp. 1802918, 2018.
[11] Q. Liu, Z. Wang, Y. Lou, Z. Suo, Elastic leak of a seal, Extreme Mechanics Letters, Vol. 1, pp. 54-61, 2014.
[12] R. Geryak, V. V. Tsukruk, Reconfigurable and actuating structures from soft materials, Soft Matter, Vol. 10, No. 9, pp. 1246-1263, 2014.
[13] H. Banerjee, M. Suhail, H. Ren, Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges, Biomimetics, Vol. 3, No. 3, pp. 15, 2018.
[14] B. Chen, C. Chen, Y. Lou, Z. Suo, Strain-stiffening seal, Soft Matter, Vol. 18, No. 15, pp. 2992-3003, 2022.
[15] H. Mazaheri, A. Khodabandehloo, FSI and non-FSI studies on a functionally graded temperature-responsive hydrogel bilayer in a micro-channel, Smart Materials and Structures, 2021.
[16] A. Ghasemkhani, H. Mazaheri, A. Amiri, Fluid-structure interaction simulations for a temperature-sensitive functionally graded hydrogel-based micro-channel, Journal of Intelligent Material Systems and Structures, Vol. 32, No. 6, pp. 661-677, 2021.
[17] H. Mazaheri, A. Ghasemkhani, S. Sabbaghi, Study of Fluid–Structure Interaction in a Functionally Graded pH-Sensitive Hydrogel Micro-Valve, International Journal of Applied Mechanics, Vol. 12, No. 05, pp. 2050057, 2020.
[18] H. Mazaheri, A. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, Journal of Intelligent Material Systems and Structures, Vol. 29, No. 20, pp. 3960-3971, 2018.
[19] H. Mazaheri, A. Khodabandehloo, Behavior of an FG temperature-responsive hydrogel bilayer: Analytical and numerical approaches, Composite Structures, Vol. 301, pp. 116203, 2022/12/01/, 2022.
[20] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[21] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[22] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam,
Acta Mechanica,
https://doi.org/10.1007/s00707-022-03430-0, 2023.
[23] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[24] M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[25] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[26] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[27] A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[28] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[29] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[30] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[31] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[32] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[33] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[35] M. Mohammadi, A. A. Nekounam, M. Amiri, The vibration analysis of the composite natural gas pipelines in the nonlinear thermal and humidity environment, in
Proceeding of, https://civilica.com/doc/540946/, pp.
[37] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[38] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 437-458, 2014.
[39] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[40] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[41] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[42] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, pp. 1541-1546, 2014.
[43] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[44] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[45] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[46] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[47] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[48] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[49] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[50] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[51] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[52] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[53] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[54] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[55] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[56] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[58] M. Mohammadi, A. Farajpour, A. R. Shahidi, Higher order shear deformation theory for the buckling of orthotropic rectangular nanoplates using nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_391.html, pp. 391.
[59] M. Mohammadi, A. Farajpour, A. R. Shahidi, Effects of boundary conditions on the buckling of single-layered graphene sheets based on nonlocal elasticity, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_382.html, pp. 382.
[60] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis of free vibration orthotropic sector plate based on elastic medium, in
Proceeding of, www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.
[61] N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[62] N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Advanced Materials, Vol. 18, No. 11, pp. 1345-1360, 2006.
[63] R. Noroozi, M. A. Shamekhi, R. Mahmoudi, A. Zolfagharian, F. Asgari, A. Mousavizadeh, M. Bodaghi, A. Hadi, N. Haghighipour, In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel, Biomedical Materials, Vol. 17, No. 4, pp. 045024, 2022/06/22, 2022.
[64] G. Chan, D. J. Mooney, New materials for tissue engineering: towards greater control over the biological response, Trends in biotechnology, Vol. 26, No. 7, pp. 382-392, 2008.
[65] R. Noroozi, F. Tatar, A. Zolfagharian, R. Brighenti, M. A. Shamekhi, A. Rastgoo, A. Hadi, M. Bodaghi, Additively manufactured multi-morphology bone-like porous scaffolds: experiments and micro-computed tomography-based finite element modeling approaches, International Journal of Bioprinting, Vol. 8, No. 3, pp. 40-53, 2022.
[66] Z. U. Arif, M. Y. Khalid, R. Noroozi, A. Sadeghianmaryan, M. Jalalvand, M. Hossain, Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications, International Journal of Biological Macromolecules, 2022.
[67] B. Druecke, E. Dussan V, N. Wicks, A. Hosoi, Large elastic deformation as a mechanism for soft seal leakage, Journal of Applied Physics, Vol. 117, No. 10, pp. 104511, 2015.
[68] S. K. S. Kambhammettu, L. R. Chebolu, A. P. Deshpande, A wedge penetration model to estimate leak through elastomer–metal interface, International Journal of Advances in Engineering Sciences and Applied Mathematics, Vol. 12, No. 1, pp. 65-72, 2020.
[69] T. T. Hailey Jr, R. Freyer, Well tools with actuators utilizing swellable materials, Google Patents, 2013.
[70] J. Kluge, B. Jansen, A. Lutz, D. K. De, W. S. Butterfield, P. Williamson, Downwell system with activatable swellable packer, Google Patents, 2009.
[71] S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, Journal of the Mechanics and Physics of Solids, Vol. 59, No. 11, pp. 2259-2278, 2011.
[72] S. A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, Journal of the Mechanics and Physics of Solids, Vol. 58, No. 11, pp. 1879-1906, 2010.
[73] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study, Smart Materials and Structures, Vol. 24, No. 4, pp. 045004, 2015.
[74] A. Drozdov, J. deClaville Christiansen, Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling, Acta Mechanica, Vol. 229, No. 12, pp. 5067-5092, 2018.
[75] W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, pp. 1779-1793, 2008.
[76] P. J. Flory, J. Rehner Jr, Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity, The journal of chemical physics, Vol. 11, No. 11, pp. 512-520, 1943.
[77] P. J. Flory, Thermodynamics of high polymer solutions, The Journal of chemical physics, Vol. 10, No. 1, pp. 51-61, 1942.
[78] M. L. Huggins, Some properties of solutions of long-chain compounds, The Journal of Physical Chemistry, Vol. 46, No. 1, pp. 151-158, 1942.
[79] Y. Lou, S. Chester, Kinetics of swellable packers under downhole conditions, International Journal of Applied Mechanics, Vol. 6, No. 06, pp. 1450073, 2014.
[80] Q. Liu, A. Robisson, Y. Lou, Z. Suo, Kinetics of swelling under constraint, Journal of Applied Physics, Vol. 114, No. 6, pp. 064901, 2013.
[81] Z. Wang, C. Chen, Q. Liu, Y. Lou, Z. Suo, Extrusion, slide, and rupture of an elastomeric seal, Journal of the Mechanics and Physics of Solids, Vol. 99, pp. 289-303, 2017.
[82] Y. Lou, A. Robisson, S. Cai, Z. Suo, Swellable elastomers under constraint, Journal of Applied Physics, Vol. 112, No. 3, pp. 034906, 2012.
[83] N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. M. Mashhadi, Finite bending of bilayer pH-responsive hydrogels: a novel analytic method and finite element analysis, Composites Part B: Engineering, Vol. 110, pp. 116-123, 2017.
[84] J. Abdolahi, M. Baghani, N. Arbabi, H. Mazaheri, Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis, Composite Structures, Vol. 164, pp. 219-228, 2017/03/15/, 2017.
[85] H. Mazaheri, A. Ghasemkhani, Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell, Journal of Stress Analysis, Vol. 3, No. 2, pp. 29-35, 2019.
[86] a. h. namdar, Kinetics of swelling of cylindrical functionally graded temperature-responsive hydrogels, Journal of Computational Applied Mechanics, Vol. 51, No. 2, pp. 464-471, 2020.
[87] A. Khodabandehloo, H. Mazaheri, Analytic and Finite Element Studies on Deformation of Bilayers with a Functionally Graded PH-Responsive Hydrogel Layer, International Journal of Applied Mechanics, Vol. 0, No. 0, pp. 2250053.
[88] H. Mazaheri, K. Soleymani, A. Ghasemkhani, An Analytical Solution and FEM Simulation for the Behavior of Sensitive FG micro-valve in Response to pH Stimuli, Journal of Stress Analysis, Vol. 6, No. 1, pp. -, 2021.
[89] A. H. Namdar, H. Mazaheri, Kinetics of swelling of cylindrical temperature-responsive hydrogel: a semi-analytical study, International Journal of Applied Mechanics, Vol. 12, No. 08, pp. 2050090, 2020.
[90] W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, International Journal of Solids and Structures, Vol. 46, No. 17, pp. 3282-3289, 2009.