[1] D. Reay, R. McGlen, P. Kew, 2013, Heat pipes: theory, design and applications, Butterworth-Heinemann,
[2] A. Faghri, 1995, Heat pipe science and technology, Global Digital Press,
[3] R. Gaugler, Heat transfer device, us patent no. 2350348, applied december 21, 1942, Published June, Vol. 6, pp. 1.1, 1994.
[4] G. Grover, T. Cotter, G. Erickson, Structures of very high thermal conductance, Journal of applied physics, Vol. 35, No. 6, pp. 1990-1991, 1964.
[5] T. Cotter, 1965, Theory of heat pipes, Los Alamos Scientific Laboratory of the University of California,
[6] G. M. Grover, Evaporation-condensation heat transfer device, Google Patents, 1966.
[7] G. Carbajal, C. Sobhan, G. Peterson, Numerical study of heat pipe heat spreaders with large periodic heat input, Journal of thermophysics and heat transfer, Vol. 20, No. 4, pp. 835-841, 2006.
[8] U. Vadakkan, J. Y. Murthy, S. V. Garimella, Transient analysis of flat heat pipes, in Proceeding of, 507-517.
[9] S. V. Garimella, C. Sobhan, Recent advances in the modeling and applications of nonconventional heat pipes, Advances in Heat Transfer, Vol. 35, pp. 249-308, 2001.
[10] G. J. Carbajal-Benitez, Analysis of passive two-phase heat dissipation methodologies for high heat flux impingement, Thesis, Rensselaer Polytechnic Institute, Troy, NY, 2006.
[11] B. Suman, Modeling, experiment, and fabrication of micro-grooved heat pipes: an update, 2007.
[12] B. Xiao, A. Faghri, A three-dimensional thermal-fluid analysis of flat heat pipes, International Journal of Heat and Mass Transfer, Vol. 51, No. 11-12, pp. 3113-3126, 2008.
[13] A. Faghri, M. Buchko, Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources, 1991.
[14] J. Rice, A. Faghri, Analysis of porous wick heat pipes, including capillary dry-out limitations, in Proceeding of, 595-607.
[15] R. Ranjan, J. Y. Murthy, S. V. Garimella, U. Vadakkan, A numerical model for transport in flat heat pipes considering wick microstructure effects, International Journal of Heat and Mass Transfer, Vol. 54, No. 1-3, pp. 153-168, 2011.
[16] A. Faghri, Frontiers in Heat Pipes (FHP), 2014, 5, 1, Global Digital Central, ISSN.
[17] R. J. Hosking, R. L. Dewar, 2016, Fundamental fluid mechanics and magnetohydrodynamics, Springer,
[18] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-131, 2022.
[19] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[20] F. Cingroš, Magnetic Field Control of Heat Transport in Heat Pipes, 2014.
[21] H. Aminfar, M. Mohammadpourfard, R. Maroofiazar, Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus, Experimental thermal and fluid science, Vol. 58, pp. 156-169, 2014.
[22] X. Wang, Y. Jiao, Study on the heat transfer characteristic of heat pipe containing magnetic nano-fluids strengthened by magnetic field, Math. Model. Eng. Probl, Vol. 2, pp. 5-8, 2015.
[23] S.-W. Kang, Y.-C. Wang, Y.-C. Liu, H.-M. Lo, Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe, Applied Thermal Engineering, Vol. 126, pp. 1044-1050, 2017.
[24] B. Jeyadevan, H. Koganezawa, K. Nakatsuka, Performance evaluation of citric ion-stabilized magnetic fluid heat pipe, Journal of magnetism and magnetic materials, Vol. 289, pp. 253-256, 2005.
[25] Z. Ming, L. Zhongliang, M. Guoyuan, C. Shuiyuan, The experimental study on flat plate heat pipe of magnetic working fluid, Experimental thermal and fluid science, Vol. 33, No. 7, pp. 1100-1105, 2009.
[26] Y.-C. Chiang, J.-J. Chieh, C.-C. Ho, The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement, Nanoscale research letters, Vol. 7, No. 1, pp. 1-6, 2012.
[27] M. Mohammadi, M. Mohammadi, M. Shafii, Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid), Journal of Heat Transfer, Vol. 134, No. 1, 2012.
[28] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of the rotating multilayer piezoelectric nanobeam,
Acta Mechanica,
https://doi.org/10.1007/s00707-022-03430-0, 2023.
[29] H. Shabgard, A. Faghri, Performance characteristics of cylindrical heat pipes with multiple heat sources, Applied Thermal Engineering, Vol. 31, No. 16, pp. 3410-3419, 2011.
[30] M. Shafahi, V. Bianco, K. Vafai, O. Manca, An investigation of the thermal performance of cylindrical heat pipes using nanofluids, International journal of heat and mass transfer, Vol. 53, No. 1-3, pp. 376-383, 2010.
[31] J. Ramos, N. Winowich, Finite difference and finite element methods for MHD channel flows, International journal for numerical methods in fluids, Vol. 11, No. 6, pp. 907-934, 1990.
[32] R. Rennie, J. Law, 2019, A dictionary of physics, Oxford University Press,
[33] H. KOZAI, H. IMURA, Y. IKEDA, The permeability of screen wicks, JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, Vol. 34, No. 2, pp. 212-219, 1991.
[34] H. Noda, K. Yoshioka, T. Hamatake, An experimental study on the permeability of screen wicks, JSME International Journal Series B Fluids and Thermal Engineering, Vol. 36, No. 2, pp. 357-363, 1993.
[35] S. Ergun, A. A. Orning, Fluid flow through randomly packed columns and fluidized beds, Industrial & Engineering Chemistry, Vol. 41, No. 6, pp. 1179-1184, 1949.
[36] N. Pooyoo, S. Kumar, Numerical Simulation of Cylindrical Heat Pipe Using Al2O3-Water Nanofluid as the Working Fluid, International Energy Journal, Vol. 22, No. 3, 2022.
[37] R. E. Sonntag, G. J. Van Wylen, Introduction to thermodynamics: classical and statistical, pp. 1971.
[38] U. V. Veedu, Transient three-dimensional modeling of flat heat pipes with discrete heat sources, Thesis, Purdue University, 2004.
[39] U. Vadakkan, S. V. Garimella, J. Y. Murthy, Transport in flat heat pipes at high heat fluxes from multiple discrete sources, J. Heat Transfer, Vol. 126, No. 3, pp. 347-354, 2004.
[40] M. M. Heyhat, A. Irannezhad, Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids, Journal of Molecular Liquids, Vol. 268, pp. 169-175, 2018.
[41] V. Artemov, A. Volkov, A. Pronin, Electrical properties of water: a new insight, Biophysics, Vol. 59, No. 4, pp. 520-523, 2014.
[42] J. G. Collier, J. R. Thome, 1994, Convective boiling and condensation, Clarendon Press,
[43] V. P. Carey, 2020, Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment, CRC Press,
[44] A. Dargys, J. Kundrotas, 1994, Handbook on physical properties of Ge, Si, GaAs and InP, Science and Encyclopedia Publishers Vilnius,
[45] A. I. Zografos, W. A. Martin, J. E. Sunderland, Equations of properties as a function of temperature for seven fluids, Computer Methods in Applied Mechanics and Engineering, Vol. 61, No. 2, pp. 177-187, 1987.