[1] M. Biot, Thermoelasticity and Irreversible Thermodynamics, Journal of Applied Physics Vol. 27, No. 3, pp. 240-253, 1956.
[2] C. Cattaneo, Sur une forme de l'equation de la chaleur eliminant la paradoxe d'une propagation instantantee, Compt. Rendu, Vol. 247, pp. 431-433, 1958.
[3] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[4] A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.
[5] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Vol. 432, No. 1885, pp. 171-194, 1991.
[6] A. Green, P. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, Vol. 15, No. 2, pp. 253-264, 1992.
[7] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, Journal of elasticity, Vol. 31, No. 3, pp. 189-208, 1993.
[8] D. Y. Tzou, 2014, Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons,
[9] D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, Journal of Heat Transfer, Vol. 117, No. 1, pp. 8-16, 1995.
[10] M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento (1971-1977), Vol. 1, No. 2, pp. 161-198, 1971.
[11] M. Caputo, Vibrations of an infinite viscoelastic layer with a dissipative memory, The Journal of the Acoustical Society of America, Vol. 56, No. 3, pp. 897-904, 1974.
[12] H. M. Youssef, Theory of fractional order generalized thermoelasticity, Journal of Heat Transfer, Vol. 132, No. 6, 2010.
[13] Y. Povstenko, Fractional Cattaneo-type equations and generalized thermoelasticity, Journal of thermal Stresses, Vol. 34, No. 2, pp. 97-114, 2011.
[14] M. A. Ezzat, Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Physica B: Condensed Matter, Vol. 406, No. 1, pp. 30-35, 2011.
[15] M. Ezzat, A. El-Bary, Unified fractional derivative models of magneto-thermo-viscoelasticity theory, Archives of Mechanics, Vol. 68, No. 4, pp. 285-308, 2016.
[16] H. H. Sherief, E. M. Hussein, Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space, Zeitschrift für angewandte Mathematik und Physik, Vol. 68, No. 2, pp. 1-14, 2017.
[17] A. E. Abouelregal, Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat, Waves in Random and Complex Media, Vol. 31, No. 5, pp. 812-832, 2021.
[18] A. Abouelregal, On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags, Journal of Applied and Computational Mechanics, Vol. 6, No. 3, pp. 445-456, 2020.
[19] A. E. Abouelregal, M. A. Elhagary, A. Soleiman, K. M. Khalil, Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags, Mechanics Based Design of Structures and Machines, pp. 1-18, 2020.
[20] S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[21] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[22] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[23] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[24] A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[25] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[26] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[27] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[28] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[29] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[30] H. Asemi, S. Asemi, A. Farajpour, M. J. P. E. L.-d. S. Mohammadi, Nanostructures, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Vol. 68, pp. 112-122, 2015.
[31] S. Asemi, A. Farajpour, H. Asemi, M. J. P. E. L.-d. S. Mohammadi, Nanostructures, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Vol. 63, pp. 169-179, 2014.
[32] M. Baghani, M. Mohammadi, A. J. I. J. o. A. M. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, Vol. 8, No. 04, pp. 1650048, 2016.
[33] A. Farajpour, M. Danesh, M. J. P. E. L.-d. S. Mohammadi, Nanostructures, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Vol. 44, No. 3, pp. 719-727, 2011.
[34] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. J. C. S. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Vol. 140, pp. 323-336, 2016.
[35] A. Farajpour, M. Mohammadi, A. Shahidi, M. J. P. E. L.-d. S. Mahzoon, Nanostructures, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Vol. 43, No. 10, pp. 1820-1825, 2011.
[36] A. Farajpour, A. Rastgoo, M. J. M. R. C. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Vol. 57, pp. 18-26, 2014.
[37] A. Farajpour, A. Rastgoo, M. J. P. B. C. M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Vol. 509, pp. 100-114, 2017.
[38] A. Farajpour, A. Shahidi, M. Mohammadi, M. J. C. S. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Vol. 94, No. 5, pp. 1605-1615, 2012.
[39] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. J. M. Mohammadi, N. Letters, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Vol. 11, No. 6, pp. 302-307, 2016.
[40] N. Ghayour, A. Sedaghat, M. Mohammadi, Wave propagation approach to fluid filled submerged visco-elastic finite cylindrical shells, 2011.
[41] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[42] M. Mohammadi, A. Farajpour, M. Goodarzi, H. J. J. o. S. M. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Vol. 5, No. 3, pp. 305-323, 2013.
[43] M. Mohammadi, M. Ghayour, A. J. C. P. B. E. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Vol. 45, No. 1, pp. 32-42, 2013.
[44] M. Mohammadi, M. Ghayour, A. J. J. o. S. Farajpour, A. o. N. T. i. M. Engineering, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Vol. 3, No. 2, pp. 47-56, 2010.
[45] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[46] M. Mohammadi, M. Goodarzi, M. Ghayour, A. J. C. P. B. E. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Vol. 51, pp. 121-129, 2013.
[47] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. J. E. J. o. M.-A. S. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, Vol. 77, pp. 103793, 2019.
[48] M. Mohammadi, A. Moradi, M. Ghayour, A. J. L. A. J. o. S. Farajpour, Structures, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Vol. 11, No. 3, pp. 437-458, 2014.
[49] M. Mohammadi, A. J. S. E. Rastgoo, A. I. l. J. Mechanics, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Vol. 69, No. 2, pp. 131-143, 2019.
[50] M. Mohammadi, A. J. M. o. A. M. Rastgoo, Structures, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Vol. 27, No. 20, pp. 1709-1730, 2020.
[51] H. Moosavi, M. Mohammadi, A. Farajpour, S. J. P. E. L.-d. S. Shahidi, Nanostructures, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Vol. 44, No. 1, pp. 135-140, 2011.
[52] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[53] J.-L. Wang, H.-F. Li, Surpassing the fractional derivative: Concept of the memory-dependent derivative, Computers & Mathematics with Applications, Vol. 62, No. 3, pp. 1562-1567, 2011.
[54] Y.-J. Yu, W. Hu, X.-G. Tian, A novel generalized thermoelasticity model based on memory-dependent derivative, International Journal of Engineering Science, Vol. 81, pp. 123-134, 2014.
[55] S. Shaw, A note on the generalized thermoelasticity theory with memory-dependent derivatives, Journal of Heat Transfer, Vol. 139, No. 9, 2017.
[56] M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary, On dual-phase-lag thermoelasticity theory with memory-dependent derivative, Mechanics of Advanced Materials and Structures, Vol. 24, No. 11, pp. 908-916, 2017.
[57] S. Mondal, P. Pal, M. Kanoria, Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative, Acta Mechanica, Vol. 230, No. 1, pp. 179-199, 2019.
[58] P. Lata, S. Singh, Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives, Coupled systems mechanics, Vol. 9, No. 5, pp. 397-410, 2020.
[59] I. Kaur, P. Lata, K. Singh, Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures, International Journal of Mechanical and Materials Engineering, Vol. 15, No. 1, pp. 1-13, 2020.
[60] A. Soleiman, A. E. Abouelregal, H. Ahmad, P. Thounthong, Generalized thermoviscoelastic model with memory dependent derivatives and multi-phase delay for an excited spherical cavity, Physica Scripta, Vol. 95, No. 11, pp. 115708, 2020
[61] I. Sarkar, B. Mukhopadhyay, On energy, uniqueness theorems and variational principle for generalized thermoelasticity with memory-dependent derivative, International Journal of Heat and Mass Transfer, Vol. 149, No. 5, pp. 119112, 2020.
[62] E. Awwad, A. E. Abouelregal, A. Soleiman Thermoelastic Memory-dependent Responses to an Infinite Medium with a Cylindrical Hole and Temperature-dependent Properties, Journal of Applied and Computational Mechanics, Vol. 7, No. 2, pp. 870-882, 2021.
[63] T. H. He, S. H. Shi, Effect of temperature-dependent problems on thermoelastic problem with thermal relaxations, Acta Mech. Solida Sin., Vol. 27, pp. 412–419, 2014.
[64] H. Sherief, A. M. Abd El-Latief, Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity, International Journal of Mechanical Sciences, Vol. 74, pp. 185-189, 2013.
[65] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, Journal of Computational and Applied Mathematics, Vol. 10, No. 1, pp. 113-132, 1984.
[66] R. Tiwaria, A. Singhalb, A. Kumarc, Effects of variable thermal properties on thermoelastic waves induced by sinusoidal heat source in half space medium, Materials Today: Proceedings, 2022.