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Abstract 

The aim of this work is to investigate a generalized dual phase-lag model with variable thermal 

material parameters and memory dependent derivatives (VMDPL). In view of this model, the 

thermoelastic behavior on a half-space under an external body force and subjected to 

exponentially varying heat is analytically investigated. The governing differential equations are 

numerically solved using the Laplace transform approach. The effects of the variable thermal 

material properties and memory dependent derivative on all the physical quantities of a half-space 

are discussed.  The obtained results demonstrate that the physical fields of a half-space depend not 

only on the distance, but also on the memory time delay and the variable thermal parameter. 

Furthermore, the variable thermal parameter and the variable thermal parameter  has a clear 

effect on the temperature and the stress but has a negligible effect on the displacement. Finally, the 

validity of results is acceptable by comparing the displacement, stress and temperature according 

to the present generalized model (VMDPL) with those due to other thermoelasticity theories 

Keywords: Thermoelasticity; Phase-Lags; Variable Thermal Material Properties; Memory Dependent 

Derivative. 

1. Introduction 

The classical uncoupled thermoelectricity theory (UCTE) is considered to depend on Fourier 's thermal 

conduction law and does not address physical structures and materials, such as amorphous media, glassy, human-

made porous materials, polymers and colloids. Biot[1] proposed the coupled theory of thermoelasticity model to 

solve this problem (CTE). Classical models for heat transmission anticipate an infinite speed due to the nature of the 

parabolic-type heat equation. Cattaneo [2] suggested a generalization of Fourier's law of heat conduction in terms of 

relaxation time  to achieve the finite speed of thermal spread waves.  Lord and Shulman [3], Green and Lindsay 

[4], Green and Naghdi [5-7], and Tzou [8] developed generalized models of thermoelasticity to overcome the UCTE 

and CTE models' absurdity of limitless thermal wave speed. In the temperature gradient and heat flux, Tzou [9] 

added two separate parameters  and ,  referred to as the phase-lags of the traditional Fourier law, respectively.  

For two decades many researchers proved that fractional-order derivatives models have many applications in 

multi-domain, such as power-law phenomena in fluids, viscoelastic mechanics, ecology, allometric scaling laws in 

biology, complex networks, colored noise, polarization, electrode-electrolyte and fractional kinetics, dielectric 

polarization, boundary layer effects, and electromagnetic waves. Using fractional derivatives models for the 

explanation of viscoelastic materials and proof of the connection between the linear viscoelasticity theory and 

fractional derivatives, Caputo and Mainardi [10, 11] discovered that there is no conflict with practical results. 
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 In [12], the author developed a novel fractional generalized thermoelasticity theory based on fractional order heat 

conduction, which is backed by the corresponding uniqueness theorem. Povstenko [13] looked into the generalized 

Cattaneo-type model with fractional derivatives of time and came up with a thermal stress model. Some studies 

relating to generalized local thermoelasticity theories with fractional derivative investigated by [14-16]. Based on 

fractional computation and Taylor series expansions for time-fractional order, Abouelregal [17] proposes a new 

model of generalized thermoelasticity as a function of multi-relaxation durations. Similarly, in [18], he provided a 

modified model of heat conduction that involved a higher order of time derivative and extended Green and Naghdi's 

theory without energy dissipation. On the other hand, nonlocal elasticity theory is a convenient methodology for 

considering the small-scale effects that are exhibited by nanoscopic structures. In recent decades, the use of nonlocal 

elasticity theory in mechanical modelling of these structures has seen an inflationary development forces between 

atoms. Furthermore, many studies have been investigated by using the nonlocal (local) elasticity theory [19-52].  

In the last few decades, it has become evident that the next state of the physical system depends not only on its 

present state but also on all its historical ones. Wang and Li established the concept of memory dependent 

derivatives in their paper [53]. This new sort of derivative turned out to be a useful mathematical tool and a missing 

link in a number of physical situations. Memory dependent derivatives (MDD) are now, in addition to fractional 

ordered derivatives, a significant mathematical tool for understanding many real-world phenomena. In the rate of 

heat flux, Yu et al. [54] utilized memory dependent derivatives (MDD) in the Lord-Shulman (LS) extended 

thermoelasticity theory. Recently, [55-62] studied various models related to generalized thermoelasticity theories 

with MDD.   

 The present contribution aims to investigate a generalized dual phase-lag model with variable thermal material 

properties and memory dependent derivative (VMDPL). This model is used to examine the thermoelastic behaviour 

of a half-space under an external body force and subjected to exponentially varying heat. The effects of the variable 

thermal material properties and memory dependent derivative on all the physical quantities of a half-space are 

discussed.  The obtained results demonstrate that the physical fields of a half-space depend not only on the distance, 

but also on the memory time delay and the variable thermal parameter. Furthermore, the variable thermal parameter 

and the variable thermal parameter  has a clear effect on the temperature and the stress but has a negligible effect on 

the displacement. The Laplace transform technique is used to solve the governing differential equations numerically. 

The impacts of the variable thermal material characteristics and memory dependent derivative are graphically 

depicted in our numerical computations. Finally, the obtained results are supported by the previous literature. 

  

2. Thermoelastic Model and Fundamental Equations 

The conventional theory of heat conduction based on Fourier's law clearly predicts an infinite heat propagation 

speed. In addition, the basic Fourier's law [1] 

                                                      (1) 

where  denotes the heat flux vector,  signifies the changing temperature, where  is the absolute 

temperature over the reference temperature  and  is the thermal conductivity.  

With dual-phase-lag heat conduction, Tzou [8] introduces the modified Fourier law. 

  (2) 

Yu et al. [54] generalizes the Lord-Shulman (LS) by using memory dependent derivatives (MDD). 

                                                     (3) 

Similarly, we analyze the heat conduction equation with memory-dependent derivative as a dual-phase lag 

model. 

  (4) 

where  is the memory dependent derivatives (MDD) of mth order defined by  

   (5) 

with the time delay  and -times differentiable function  about , together with the kernel function 
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 which can chosen freely with  over .  

Here, we apply the memory kernel function  proposed by Ezzat et al [56]: 

 (6)
 

The fixed point dependence can be ignored via the fractional derivative. On the other hand, the memory 

dependent derivatives have a better chance of capturing the material reaction. As a result, we make use of this 

derivative in our work. 

The energy balance equation in the absence of a heat source Q has the shape 

  (7) 

where  denotes specific heat under constant strain, the stress temperature modulus is denoted by 

, where  signifies the thermal expansion coefficient, ,  Lamé’s constants,  the displacement 

vector,  is the medium's density. 

Using the divergence of Eq. (4) and taking Eq. (6) into account, we obtain 

 (8) 

Thermal conductivity is a significant material parameter that is usually regarded as constant. Nevertheless, 

several experimental and theoretical investigations have shown that thermal conductivity is strongly related to 

changes in temperature [63, 64]. As a result, the linear relationships between the thermal material characteristics  

and  and temperature increment are used. 

 (9) 

such that  indicates the value of the thermal conductivity when it independent of temperature and  is a non-

positive constant.  In this case, the thermal diffusivity has the form  , and then  

  (10) 

Using the mapping (Kirchhoff’s transformation):  

 
  (11) 

and applying Nabla operator, we obtain 

 , (12) 

When both sides of Eq. (10) are differentiated with regard to time, the result is 

  (13) 

Due to Kirchhoff’s transformation (11) and using Eqs. (12) and (13), Eq. (8) becomes  

 (14) 

   where . Once  is identified  given by  

  (15) 
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On the other hand, the additional basic equations of motion, constitutive equations and strain and displacement 

relations based on the theory of thermoelasticity for a homogeneous and isotropic thermoelastic solid are 

 , (16) 

 , (17) 

  (18) 

where  means the mass density, and  represents the component of the external forces. The system described 

above is totally hyperbolic in the sense that both the equations of motion (18) and the equation of heat transport (16) 

are of the hyperbolic type.  

Now, Eqs. (14) and (9) represent our generalized dual phase-lag thermoelastic model with variable thermal 

material properties and memory-dependent derivative, which we will refer to as VMDPL.  

  

3.  Formulation of the problem 

Using our generalized dual phase-lag model, we study an isotropic homogeneous thermoelastic half-space   

0x    with an external body force and exposed to exponentially varying heat. Also, we supposed that the state of 

the medium depends only on ,x t  and that the vector of displacement  ( ( , ),0,0)u u x t=       .   

 

Figure 1 Geometry of the thermoelastic half-space. 

The constitutive equation has the form 

  (19) 

Also, the equation of motion in the present external force  in the one dimensional case has the form 

                                                                                                                  (20) 

In view of Kirchhoff’s transformation (11), Eqs. (19-20) becomes  

  (21) 

                                                       (22) 

The heat equation in Eq. (14) becomes 

 (23) 
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By applying the subsequent non-dimensional variables: 

 (24) 

Equations (21)-(23) converts to 

  (25) 

 (26) 

  (27) 

where 

  (28) 

The primes in the above equations have been omitted for clarity and convenience. Besides, we use  

, in which  is a constant parameter (decaying parameter). 

4. Boundary and initial conditions  

In this study, we assume that the medium is initially at rest, and hence the problem's beginning  conditions are as 

follows: 

  (29) 

Also, we suppose that the boundary conditions are :  

  (30) 

 (31) 

where  is the time pulse of heat.  

In view of Kirchhoff’s transformation, the 2nd initial assumption of Eq. (29) and the boundary condition of Eq. 

(31), become  

 (32) 

Moreover, the regularity boundary conditions are 

 (33) 
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5. The Solution of the problem in the Laplace transform domain 

Applying Laplace transform    into Equations (26)-(28),  noting that for  any  function  with  ith order MDD 

[65]:  

         (34) 

and using the considered initial conditions (29), we have 

    (35) 

  (36) 

  (37) 

where  

 (38) 

Also, in the absence of MDD, we putting       . 

One can show that Eq. (35) becomes  

  (39) 

From which together with Eq. (36), we have 

  (40) 

where    

Hence, the general solution of the function  has the form 

  (41) 

where  and ,  are satisfy  

From Eqs. (36) and (41), we get 

 (42) 

Also, the displacement  can be expressed as  

 (43) 

In view of Eq. (37) and using Eqs. (41) and (42), we have 

 (44) 

After applying Laplace transform, the boundary conditions (32) become 

 (45) 

From Eqs. (41) and (44) taking into account the above conditions, we obtain  
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 (46) 

From the above equations, we determine the unknown parameters , . To determine the studied fields 

in the physical domain, the Riemann-sum approximation method is used to obtain numerical results. [65] has the 

details of these procedures. 

To determine the solutions of the examined fields in the physical domain, we use an appropriate and effective 

numerical approach based on a Fourier series expansion [65].  Any Laplace domain function  can be inverted 

to the time domain using this method as follows:   

 (47) 

where  is a finite number of terms,  is the real part and  is imaginary number unit. For faster convergence, 

numerous numerical experiments have shown that the value of  fulfills the relation  [65]. 

 

6. Special cases of a generalized thermoelastic model (VMDPL). 

This paper investigates a generalized thermoelastic model with variable thermal material properties and memory 

dependent derivatives (VMDPL). The investigated model is reduced to several models with (without) variable 

thermal material properties and memory dependent derivatives. There are four types of reduced models: 

 

[1] Thermoelastic models without both variable thermal material properties and memory dependent derivatives: 

▪ Classical thermoelastic model (CTE):   

▪ Lord-Shulman model (LS):  

▪ Dual phase-lag model (DPL):  

[2] Thermoelastic models without variable thermal material properties and with memory dependent derivatives: 

▪ MDD Lord-Shulman model (MLS): . 

▪ MDD Dual phase-lag model including (MDPL): . 

[3] Thermoelastic models with variable thermal material properties and without memory dependent derivatives: 

▪ Variable thermal material Classical thermoelastic model (VCTE): .  

▪ Variable thermal material Lord-Shulman model (VLS):  

▪ Variable thermal material Dual phase-lag model (VDPL):  

[4] Thermoelastic models with both variable thermal material properties and memory dependent   derivatives: 

▪ Variable thermal material Lord-Shulman model with  MDD 

(VMLS): . 

▪ Variable thermal material Dual phase-lag model with MDD (VMDPL): 

.   

 

7. Results and Discussion 

To confirm and describe the results obtained in the foregoing sections, we investigate the numerical results using 

the value of the Silicon (Si) material at  as [62] 

   

The thermoelastic behaviour of a half-space under an external body force and subjected to exponentially varying 

heat is discussed by our modiefied model (VMDPL). The acquired results are represented visually in Figs. 2-19 for a 
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variety of distance values ) at , when the dual phase-lags  and  in the 

present external body forces  and the time pulse of heat . Furthermore, our numerical 

computations are obtained using the Mathematica programming Language and are prepared for four directions.  

 

7.1 Influence of the memory kernel  on the physical fields 

In this section, we demonstrate how the memory kernel  acts with the field variables of a half-space 

corresponding to the generalized model VMDPL. The obtained results are represented in Figs.2-4 for the field 

quantities corresponding to different values of the distance ) at  and different values of the 

constants , when the phase-lags  and  together with variable thermal material properties 

, .    

    

 
Figure 2: The effect of the memory kernel  on the temperature . 

 
Figure 3: The effect of the memory kernel  on the displacement . 
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Figure 4: The effect of the memory kernel  on the stress . 

 

Figure 2 displays the distribution of the temperature  of a half-space for distinct values of the constants  (the 

kernel function  of MDD). This Figure ensures that the values of temperature  decreases with increasing the 

distance  for . Also, the magnitude of the temperture curve for VMDPL in the case ( ) is 

greater than that for the other cases of the kerenel, although they coincide to a constant value from . Hence, 

the different values of the constants  (the memory kernel  function ), has clearly effect on the temperature .  

It is evident from Figure 3, that the memory kernel function  has a negligible effect on . 

Figure 4. illustrates that the depth of the stress curves for VMDPL in the case ( ) is greater than that 

for the other cases of the kerenel. Hence, the kernel function  of MDD has a significant effect on the stress . 

From Figures 2-4, we notice that values of the physical fields (temperature  the displacement  and the stress ) 

converge to zero when the distance tends to 4, which is in quite good agreement with the regularity boundary 

conditions. Finally, we conclude that the kernel  of MDD has a significant effect on all the fields except the 

displacement . This result is consistent with the results obtained by[57, 62]. 

 

7.2 The effects of a memory time delay  on physical fields 

In the present case, we introduce the effect of memory time delay  on the field variables of a half-space. The 

obtained results are shown in Figs.5-7 for the field quantities corresponding to different values of the distance 

) at  and different values of the time delay  of MDD in the case , when the dual 

phase-lags , together with the variable thermal material properties 

 

 
Figure 5: The effect of the memory time delay ω on the temperature . 
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Figure 6: The effect of the memory time delay ω on the displacement . 

 
Figure 7: The effect of the memory time delay ω on the stress . 

 

Figure 5 presents the variations of the temperature   of a half-space for different values of the memory time 

delay . It is noticed that increasing the amount of the memory time delay  increases the variation of temperature 

 in the interval , even though they eventually coincide to a constant value after . Also, the 

different values of memory time delay  has obviously effect on the temperature .  But from Figure 6, it is clear 

that the memory time delay  has a weak effect on  .  

Figure 7  illustrates that the memory time delay ω has a significant effect on the stress . On the other hand, 

these figures ensure the values of the physical fields (temperature  the displacement  and the stress ) converge 

to zero when the distance tends to 4, which agrees with the regularity boundary conditions. Finally, we achieve that 

the physical quantities depend not only on the distance , but also on the memory time delay . Our findings are in 

strong accordance with the results of [57-62] 

7.3 Different models of thermoelasticity 

In this subsection, we study the distributions of the physical fields for two classes of different models of 

thermoelasticity (LS, VLS & VMLS) and (DPL,VDPL & VMDPL). The achieved results are represented in Figs. 8-

13 for the field quantities matching to different values of the distance ) at  and the 

time delay  of MDD with , together with  and   
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Figure 8: The temperature  for different models of LS . Figure 11: The temperature  for different models of DPL . 

 
 

different models of LS .for  9: The displacement  Figure Figure 12: The displacement  for different models of DPL . 

 
 

Figure 10: The stress  for different models of LS . Figure 13: The stress  for different models of DPL . 

  

Figs. 8-13 show that the results of the VMLS and VMDPL models differ from Lord-Shulman model (LS) and 

the dual phase-lag model (DPL) for the phenomenon of limited velocities of heat wave propagation.  It is worth 

mentioning that the memory dependent derivatives (MDD) serve as an important mathematical tool in describing 

many real world phenomenon. On the other hand, experimental and theoretical investigations have shown that 

thermal conductivity is strongly related to changes in temperature. Therefore, the current generalized modified 

model with variable thermal material properties and memory-dependent derivative (VMDPL or VMLS) is the best. 
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7.4 Influence of the variable thermal material properties on the physical fields 

This section is dedicated to discuss how the variable thermal parameter   effects on the field variables of a 

half-space using the modified model VMDPL. The acquired results are depicted in Figs.(14-16) for the field 

quantities corresponding to different values of the radius ) at  and different values of the 

variable thermal parameter , when the dual phase-lags  and  the time delay  of MDD 

with . 

 

 

Figure 14: The effect of variable thermal material  on the temperature . 

 

Figure 15: The effect of variable thermal material  on the displacement . 
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Figure 16: The effect of variable thermal material  on the stress  

 

Figures 14-16 illustrates the variety of the field variables of a half-space througth distinct values the variable 

thermal parameter . These figures guarantee that the variable thermal parameter  has a clear effect on the 

temperature  and the stress  until  but has a weak effect on . Therefore,  the physical quantities depend 

not only on the distance ,  but also on the variable thermal parameter . This result is consistent with the results 

obtained by [63, 64, 66]. 

 

7.5 The effect of the time on the physical fields via VMDPL model.  

Adopting our generalized dual phase-lag model (VMDPL), we exhibit the effect of time  on all field variables 

(VMDPL). In this case, we put the phase-lags  and  when variable thermal material properties 

 and the time delay  of MDD with , together with the time pulse of heat . 

For a comparison of the results, the temperature, the displacement, and stress are accessible in Figs. 17-19. These 

distributions are very  sensitive to the time instant t, as can be seen from the figures.  It is also clear from  these Figs. 

that the behavior of the temperature, displacement and stress are the most affected by the change of time. 

 

 

 

 
 

 

Figure 17: The temperature  with different time different time.with  t The displacemen Figure 18: 
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different timewith  Figure 19: The stress  

 

 

Conclusion 

A generalized  dual phase-lag thermoelastic model with variable thermal material properties and memory-

dependent derivative (VMDPL) is investigated. Various classical and generalized thermoelasticity models are 

extracted from its general model. Via the generalized dual phase-lag thermoelastic model, the distributions of the 

physical quantities for a half-space under an external body force, are discussed. The results of the numerical 

simulation lead to the following conclusions:  

• The effects of the memory kernel function   on the physical fields of a half-space are very obvious. 

• The physical quantities of a half-space depend not only on the distance , but also on the kernel function   

of memory dependent derivative.  

• The kernel function  of MDD has a significant effect on all the fields, but has a weak effect on the displace

ment . 

• The results of our study (VMLS & VMDPL) differs from Lord-Shulman model (LS) and the dual phase-

lag model (DPL) of the phenomenon of limited velocities of the propagation of heat waves. As a result, our 

modified model is the most effective. 

• The variable thermal parameter  has a clear effect on the temperature  and the stress  but has a negligi

ble effect on . 

• The thermoelasticity with memory-dependent type is better than the fractional type at expressing the memory

 effect. 

•  MDD is more adaptable. We have adequate option to choose kernel function and delay time based on our pr

oblem. 
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