Comparative study on the lateral stability strength of laminated composite and fiber-metal laminated I-shaped cross-section beams

Document Type : Research Paper

Authors

Department of Civil Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.

Abstract

The current investigation aims to peruse the discrepancies between the endurable transverse buckling load of multi-layer fibrous composite and fiber-metal laminate (FML) I-section beams. Using the energy method, the governing differential equations are extracted in accordance with the classical laminated plate theory and Vlasov’s model for non-uniform torsion. Then, the equilibrium equations system is numerically solved via the differential quadrature method as a powerful and accurate technique, and finally, the lateral buckling load is calculated. Numerical results are presented for a simply supported I-beam under gradient moment. The accuracy of the proposed method is examined by comparing the results with those obtained by ANSYS finite element software. By considering the best conventional stacking sequences, the lateral stability strength of FML and laminated composite beams with I-shaped cross-sections are compared to each other for different fiber composite materials, end moment ratios, mode numbers, and metal volume fractions of the web and both flanges. The results show that the transverse buckling load of the selected I-beam is significantly affected by the mentioned parameters. In addition, the numerical outcomes indicate that the lateral buckling capacity of CARALL is more than GLARE for all analyzed cases.

Keywords

[1]          M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.
[2]          M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019/09/01/, 2019.
[3]          M. Mohammadi, A. Rastgoo, Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, Structural Engineering and Mechanics, An Int'l Journal, Vol. 69, No. 2, pp. 131-143, 2019.
[4]          A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[5]          M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics, Vol. 8, No. 4, pp. 788-805, 2016.
[6]          M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and Stability Analysis of the Rotating Nanobeam in a Nonuniform Magnetic Field Considering the Surface Energy, International Journal of Applied Mechanics, Vol. 08, No. 04, pp. 1650048, 2016.
[7]          M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[8]          A. Farajpour, M. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[9]          A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[10]        M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[11]        M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, 2015.
[12]        H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[13]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Shehni nezhad pour, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014/02/01/, 2014.
[14]        A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[15]        M. GOODARZI, M. MOHAMMADI, A. FARAJPOUR, M. KHOORAN, INVESTIGATION OF THE EFFECT OF PRE-STRESSED ON VIBRATION FREQUENCY OF RECTANGULAR NANOPLATE BASED ON A VISCO-PASTERNAK FOUNDATION, JOURNAL OF SOLID MECHANICS, Vol. 6, No. 1, pp. -, 2014.
[16]        S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[17]        S. Asemi, A. Farajpour, M. Mohammadi, Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory, Composite Structures, Vol. 116, pp. 703-712, 2014.
[18]        M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[19]        S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[20]        M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, pp. 659-682, 2014.
[21]        M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[22]        M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature Effect on Vibration Analysis of Annular Graphene Sheet Embedded on Visco-Pasternak Foundati, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[23]        M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[24]        M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 51, pp. 121-129, 2013.
[25]        M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[26]        M. MOHAMMADI, M. GOODARZI, M. GHAYOUR, S. ALIVAND, SMALL SCALE EFFECT ON THE VIBRATION OF ORTHOTROPIC PLATES EMBEDDED IN AN ELASTIC MEDIUM AND UNDER BIAXIAL IN-PLANE PRE-LOAD VIA NONLOCAL ELASTICITY THEORY, JOURNAL OF SOLID MECHANICS, Vol. 4, No. 2, pp. -, 2012.
[27]        M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[28]        A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[29]        M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[30]        N. GHAYOUR, A. SEDAGHAT, M. MOHAMMADI, WAVE PROPAGATION APPROACH TO FLUID FILLED SUBMERGED VISCO-ELASTIC FINITE CYLINDRICAL SHELLS, JOURNAL OF AEROSPACE SCIENCE AND TECHNOLOGY (JAST), Vol. 8, No. 1, pp. -, 2011.
[31]        H. Moosavi, M. Mohammadi, A. Farajpour, S. H. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011/10/01/, 2011.
[32]        A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[33]        A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[34]        M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Vol. 3, No. 2, pp. 47-56, 2010.
[35]        Y. Xu, J. Zhu, Z. Wu, Y. Cao, Y. Zhao, W. Zhang, A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization, Advanced Composites and Hybrid Materials, Vol. 1, No. 3, pp. 460-477, 2018.
[36]        A. Muc, P. Kędziora, A. Stawiarski, Buckling enhancement of laminated composite structures partially covered by piezoelectric actuators, European Journal of Mechanics-A/Solids, Vol. 73, pp. 112-125, 2019.
[37]        A. Elkaimbillah, B. Braikat, F. Mohri, N. Damil, A one-dimensional model for computing forced nonlinear vibration of thin-walled composite beams with open variable cross-sections, Thin-Walled Structures, Vol. 159, pp. 107211, 2021.
[38]        C. Li, X. Tian, T. He, New insights on piezoelectric thermoelastic coupling and transient thermo-electromechanical responses of multi-layered piezoelectric laminated composite structure, European Journal of Mechanics-A/Solids, Vol. 91, pp. 104416, 2022.
[39]        M. Soltani, R. Abolghasemian, M. Shafieirad, Z. Abbasi, A. A. Mehra, A. Ghasemi, Multi-objective optimization of lateral stability strength of transversely loaded laminated composite beams with varying I-section, Journal of Composite Materials, Vol. 56, No. 12, pp. 1921-1939, 2022.
[40]        M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[41]        S. Rajasekaran, K. Nalinaa, Stability and vibration analysis of non-prismatic thin-walled composite spatial members of generic section, International Journal of Structural Stability and Dynamics, Vol. 5, No. 04, pp. 489-520, 2005.
[42]        S. P. Machado, V. H. Cortínez, Free vibration of thin-walled composite beams with static initial stresses and deformations, Engineering Structures, Vol. 29, No. 3, pp. 372-382, 2007.
[43]        T. P. Vo, J. Lee, Flexural–torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory, International Journal of Mechanical Sciences, Vol. 51, No. 9-10, pp. 631-641, 2009.
[44]        C. Karaagac, H. Ozturk, M. Sabuncu, Effects of an edge crack on the free vibration and lateral buckling of a cantilever laminated composite slender beam, Journal of Vibration and Control, Vol. 19, No. 16, pp. 2506-2522, 2013.
[45]        L. Ascione, V. P. Berardi, A. Giordano, S. Spadea, Local buckling behavior of FRP thin-walled beams: a mechanical model, Composite Structures, Vol. 98, pp. 111-120, 2013.
[46]        A. Ghasemi, M. Mohandes, Nonlinear free vibration of laminated composite Euler-Bernoulli beams based on finite strain using generalized differential quadrature method, Mechanics of Advanced Materials and Structures, Vol. 24, No. 11, pp. 917-923, 2017.
[47]        M. Mohandes, A. R. Ghasemi, Modified couple stress theory and finite strain assumption for nonlinear free vibration and bending of micro/nanolaminated composite Euler–Bernoulli beam under thermal loading, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 231, No. 21, pp. 4044-4056, 2017.
[48]        A. R. Ghasemi, M. Mohandes, A new approach for determination of interlaminar normal/shear stresses in micro and nano laminated composite beams, Advances in Structural Engineering, Vol. 22, No. 10, pp. 2334-2344, 2019.
[49]        A. R. Ghasemi, M. Heidari-Rarani, B. Heidari-Sheibani, A. Tabatabaeian, Free transverse vibration analysis of laminated composite beams with arbitrary number of concentrated masses, Archive of Applied Mechanics, Vol. 91, No. 6, pp. 2393-2402, 2021.
[50]        A. Asadi, A. H. Sheikh, O. T. Thomsen, Buckling behaviour of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading, Thin-Walled Structures, Vol. 141, pp. 85-96, 2019/08/01/, 2019.
[51]        !!! INVALID CITATION !!! [50-53].
[52]        A. M. M. Bidgoli, M. Heidari-Rarani, Axial buckling response of fiber metal laminate circular cylindrical shells, Structural Engineering and Mechanics, Vol. 57, No. 1, pp. 45-63, 2016.
[53]        A. R. Ghasemi, M. Mohandes, Comparison between the frequencies of FML and composite cylindrical shells using beam modal function model, Journal of Computational Applied Mechanics, Vol. 50, No. 2, pp. 239-245, 2019.
[54]        A. R. Ghasemi, S. Kiani, A. Tabatabaeian, Buckling analysis of FML cylindrical shells under combined axial and torsional loading, Mechanics of Advanced Composite Structures, Vol. 7, No. 2, pp. 263-270, 2020.
[55]        A. R. Ghasemi, M. Mohandes, Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory, Mechanics of Advanced Materials and Structures, Vol. 27, No. 1, pp. 43-54, 2020.
[56]        R. Syah, D. Ramdan, M. Elveny, M. Mohandes, A. Khan, A. Nouri, A. B. Albadarin, Computational simulation of critical speed and dynamic analysis of agglomerated CNTs/fiber/polymer/metal laminates rotating cylindrical shell, Arabian Journal of Chemistry, Vol. 14, No. 10, pp. 103358, 2021.
[57]        G. S. Dhaliwal, G. M. Newaz, Compression after impact characteristics of carbon fiber reinforced aluminum laminates, Composite Structures, Vol. 160, pp. 1212-1224, 2017.
[58]        M. Mohandes, A. R. Ghasemi, M. Irani-Rahagi, K. Torabi, F. Taheri-Behrooz, Development of beam modal function for free vibration analysis of FML circular cylindrical shells, Journal of Vibration and Control, Vol. 24, No. 14, pp. 3026-3035, 2018.
[59]        R. J. Mania, Z. Kolakowski, J. Bienias, P. Jakubczak, K. Majerski, Comparative study of FML profiles buckling and postbuckling behaviour under axial loading, Composite Structures, Vol. 134, pp. 216-225, 2015.
[60]        D. Banat, R. Mania, Stability and strength analysis of thin-walled GLARE composite profiles subjected to axial loading, Composite Structures, Vol. 212, pp. 338-345, 2019.
[61]        D. Banat, R. Mania, R. Degenhardt, Stress state failure analysis of thin-walled GLARE composite members subjected to axial loading in the post-buckling range, Composite Structures, Vol. 289, pp. 115468, 2022.
[62]        V. Z. Vlasov, Thin-walled elastic beams, PST Catalogue, Vol. 428, 1959.
[63]        J. Lee, S.-E. Kim, K. Hong, Lateral buckling of I-section composite beams, Engineering Structures, Vol. 24, No. 7, pp. 955-964, 2002.
[64]        R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of mathematical analysis and Applications, Vol. 34, No. 2, pp. 235-238, 1971.
[65]        C. W. Bert, M. Malik, Differential quadrature method in computational mechanics: a review, 1996.
[66]        V. ANSYS, 5.4, Swanson Analysis System, Inc, 2007.
[67]        M. Soltani, A Novel Approach for Lateral Buckling Assessment of Double Tapered Thin-Walled Laminated Composite I-Beams, Mechanics of Advanced Composite Structures, Vol. 9, No. 1, pp. 11-23, 2022.
[68]        M. Soltani, F. Atoufi, Non-local finite element formulation for stability analysis of thin-walled nanobeams with varying I-section, Acta Mechanica, Vol. 233, No. 2, pp. 789-811, 2022.
Volume 53, Issue 2
June 2022
Pages 190-203
  • Receive Date: 02 May 2022
  • Revise Date: 07 May 2022
  • Accept Date: 10 May 2022
  • First Publish Date: 13 May 2022