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Abstract 

The current investigation aims to peruse the discrepancies between the 

endurable transverse buckling load of multi-layer fibrous composite and 

fiber-metal laminate (FML) I-section beams. Using the energy method, the 

governing differential equations are extracted in accordance with the 

classical laminated plate theory and Vlasov’s model for non-uniform torsion. 

Then, the equilibrium equations system is numerically solved via the 

differential quadrature method as a powerful and accurate technique, and 

finally, the lateral buckling load is calculated. Numerical results are 

presented for a simply supported I-beam under gradient moment. The 

accuracy of the proposed method is examined by comparing the results with 

those obtained by ANSYS finite element software. By considering the best 

conventional stacking sequences, the lateral stability strength of FML and 

laminated composite beams with I-shaped cross-sections are compared to 

each other for different fiber composite materials, end moment ratios, mode 

numbers, and metal volume fractions of the web and both flanges. The 

results show that the transverse buckling load of the selected I-beam is 

significantly affected by the mentioned parameters. In addition, the 

numerical outcomes indicate that the lateral buckling capacity of CARALL 

is more than GLARE for all analyzed cases. 

Keywords: Lateral stability; Fiber metal laminates; Thin-wall beam; Conventional lay-ups; Differential 

quadrature method. 

1. Introduction 

Nowadays, due to the complexity of designing aerospace, marine and civil structures, and since fiber-reinforced 

epoxy composites have unique mechanical properties such as high fatigue resistance, durability, corrosion tolerance, 

and structural weight optimization, numerical and experimental research on laminated composite structural 

components have been rapidly expanded [1-40]. In this field, Rajasekaran and Nalinaa [41] assessed the vibrational 

characteristics and buckling behavior of non-prismatic composite spatial members having generic thin-walled 

section via the finite element method within the context of non-linear strain displacement relationship. Through a 

geometrically non-linear theory and employing the assumptions of large displacements and rotations, Machado and 

Cortinez [42] studied the free vibrational response of composite beams with doubly-symmetric thin-walled open 

cross-section loaded by arbitrary external forces. By the help of the finite element methodology, the flexural-
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torsional coupled free vibrational behavior and buckling problem of thin-walled composite beams were precisely 

investigated by Vo and Lee [43] considering the impacts axial load on the vibration characteristics. Based on linear 

fracture mechanics and Castigliano theory, the influence of edge crack ratio and its position on free vibration 

responses and lateral buckling strength of laminated composite slender beam was carried out by Karaagac et al. [44]. 

To estimate the buckling resistance of simply supported thin-walled structural members made of Fiber Reinforced 

Polymer (FRP) loaded by axially and uniformly transverse forces, Ascione et al. [45] developed a mechanical model 

on the basis of the assumptions of small strains and moderate rotations. In the contex of different patterns of beam’s 

model, the mechanical characteristics involving the vibrational response and stability strength of laminated 

composite members subjected to different loading cases and end conditions were completely studied in Refs.  [46-

49]. Through a one dimensional finite element model, Asadi et al. [50] analyzed the linear stability behavior of 

laminated composite beams with thin-walled open/closed sections subjected various boundary conditions. In their 

study, the impacts of transverse shear deformation and out-of-plane warping of the beam section are taken into 

consideration. Moreover, different numerical and analytical studies on the static and dynamic analyses of composite 

structural elements with different shapes and geometries exposed to various external loadings are presented in Refs. 

[51, 52]. 

Fiber-metal laminates (FMLs) are a hybrid multilayer composed of thin metal sheets and fiber-reinforced 

composite plies and are prepared by bonding fibers and resins in layers. FMLs have the simultaneous advantages of 

both fiber polymer composites and metals. In this regard, most of existing literature on the behavior FMLs 

mechanical elements is focused on cylindrical shells [52-56]. In addition, Dhaliwal et al. [57], via a laboratory study, 

investigated the behavior of fiber-metal multilayers by adding resin under an impact force and reported that adding 

resin between the layers results in decreasing the separation by 40-50% and increasing the compressive strength by 

approximately 30%. Mohandes et al. [58] extracted the equations governing the free vibration of the cylindrical shell 

made of metal-fiber composite layers based on the first-order shear deformation theory. Their work evaluated 

various parameters such as different material properties of composite fibers, lay-up arrangement, fiber angle, 

boundary conditions, number of vibrational modes, and metal volume fraction (MVF). In addition, Mania et al. [59] 

and Banat et al. [60, 61] evaluated the flexural buckling and post-buckling behavior of FMLs composite thin-walled 

beams with C- and Z-shaped sections under axial compressive force via both numerical and experimental studies.  

Owing to hybrid composite thin-walled beams applications in aircraft and spacecraft structures, wind turbines, 

and helicopter blades, it is essential to provide an accurate numerical and/or analytical solutions along with the 

possible modeling in a commercial finite element software to estimate the stability resistance of these structures. 

Motivated by this fact, lateral-torsional buckling of a multi-layer thin-walled beam with a symmetrical cross-section 

made of fiber-metal composites under externally transversely loading is investigated in this study. For this purpose, 

and as the first step, stability equations of thin-walled members are extracted via Vlasov’s model, the classical 

laminated plate theory (CLPT), and the energy method. Then, the differential quadrature method (DQM) is 

employed to discretize and solve the governing equations. Next, to examine the obtained results' accuracy and 

reliability, they are compared with those acquired from modeling in ANSYS finite element software, and a good 

agreement is observed between them. Lastly, the effect of important parameters such as end moment coefficient, 

MVF, mode number, and material type of fiber on the stability behavior of the pre-specified multi-layer hybrid 

composite I-beam having the conventional angle-ply and unidirectional layups for the web and the flanges is 

investigate. In addition, the lateral buckling resistance of FML and laminated composite I-section beam with 

uniform cross-section are compared through an exhaustive parameterization study. The numerical results of this 

research can be considered as a reference for future computational validation of the lateral stability strength of FML 

thin-walled beams.  

2. Fundamental equations 

Figure 1 shows the schematic representation of transversely loaded FML I-section member of length span L. The 

height of the web and the width of both flanges are assumed d and b, respectively. As presented in Fig. 1b, all 

section walls of the considered I-section bam consist of two metal sheets at the outer sides of fiber reinforced epoxy 

composite layers. (tw)k is the thickness of the web ply and tw is the overall thickness of the web section. (tf)k is the 

thickness of each ply of the flanges and tf is thus the total thicknesses of each flanges. In Fig. 1d, x, and y, z are 

utilized coordinates along the length and two plannar directions. The coordinate components are measured from the 

centroid of the I-shaped cross-section. Also, u0, w0 and v0 are the axial displacement, the transverse deflection along 

the z-axis, and the lateral displacement component in the y-direction. 
x

 represents the rotation of the I-shaped 

cross-section about x-axis and is commonly called the twisting angle. 
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Fig 1: (a) Configuration for transversely loaded FML beam with an I-shaped cross-section, (b) Lamination stacking sequences of the 

web and both flanges, (c) Geometry properties, (d) Coordinate system, notation for displacement parameters, (e) Definition of load 

eccentricities. 

For a laminated composite structure consists of NL perfectly bonded orthotropic layers, the stiffness quantities 

including Aij , Bij and Dij, which are the extensional, coupling and the bending stiffness matrix, respectively, are 

generally presented on the basis of the transformed reduced stiffness ( f

ij
Q and w

ij
Q ( 1,  6)i j= = ) as what follows 

[46]: 
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Here, the superscripts ( )
w

•  and ( )
f

• are adopted to exhibit the wall sections including the web and flanges. In 

addition, zk and zk+1 are the distances of outer and inner surfaces of the kth layer with respect to the mid-plane of 

thickness in the flanges, respectively. Also, yk and yk+1 refer to the web lamina distances of outer and inner surfaces 

of the kth layer with respect to the mid-line of thickness, respectively. For symmetrically balanced laminates I-

shaped cross-sections consisting of two equal flanges and one web, the cross-sectional rigidity components 

including, the axial rigidity of the FML I-shaped section ( EA ), the flexural rigidities about the y- and z directions  

(
y

EI , z
EI ), additionally, the St-Venant torsional rigidity relating to uniform torsion (GJ ), as well as, the warping 

rigidity for non-uniform torsion ( EI
 ), are described by the following equations [43]: 
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Based on these assumptions, and according to Vlasov’s theory [62], the weak statement of equilibrium equations 

of the selected FML I-shaped cross-section beam initially loaded by the transversely distributed force in the z-

direction (pz) can be represented as [39, 63]: 
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Here, zP represents the vertical distance between the point of application of the arbitrary transverse force pz(x) and 

the centroid, which is commonly called the load height parameter (Fig. 1e). Additionally, the parameter M0(x) is the 

pre-buckling bending moment loading with respect to the y-axis. 

By gathering the coefficients of the virtual displacements ( ), and after equating them to zero, the 

system of equilibrium equations for FML I-section beam under transverse loading is extracted as what follows:  

0
0EAu  =            (4) 

0
( )IV

y z
EI w p x=                                                                                                                                                                       (5) 
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Through the minimum potential energy principle, the subsequent boundary conditions at x=0 and x=L are also 

determined: 
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Since the current study is concerned with stability analysis of a transversely loaded FML I-section beam, the first 

two equilibrium equations (Eqs. (4) and (5)) have no involvement in assessing lateral buckling capacity of the 

considered member. While to peruse the lateral buckling, the two-coupled differential equations in terms of the 

lateral displacement and the torsion angle (Eqs. (6) and (7)) should be considered. 

3. Solution Methodology 

In this section, the numerical solution of the resulting coupled differential equations is developed. The 

Generalized Differential Quadrature Method (GDQM) is employed for this purpose and to calculate the axial critical 

loads. This methodology is based on the approximation of a derivative of a function at a specified point by the sum 

of the weighted factors and the values of the function at any set points in the problem solving range. According to 

GDQM, the mth order derivative of a function f(x) at an arbitrary point is described as [64] 

( )

1

( )
( )         1,2,...,

Nm
mi

jijm
j

d f x
C f x for i N

dx =

= =  (9) 

where N is the number of grid points along x direction. xj signifies the position of each sample point and f(xj) is 

function values at grid points xj (i = 1, 2, …, N). Moreover, 
( )m

ij
C denotes the weighting coefficient for the mth-order 

derivative and is computed by the following algebraic formulations: 
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In this study, Chebyshev–Gauss–Lobatto approach is used to define the position of each sample point [65] 
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Within the frame of the GDQM, the general form of the solution of two-coupled differential equations for the 

lateral displacement and the twisting angle can be expressed in the form of the following matrix: 
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Here,  is the non-dimensional form of the longitudinal variable (x) and describes as =x/L. It is necessary to 

point out that the afore-mentioned parameter () is adopted to facilitate the mathematical procedure via applying the 

DQM. After the implementation of the corresponding end conditions of transversely loaded FML beam with an I-

shaped section, the lateral buckling resistance is eventually computed from the eigenvalue solutions of Eq. (12). To 

this aim, the endurable transverse critical load is obtained by zeroing the determinant of matrix . 

4. Numerical results and discussion 

The lateral-torsional stability differential equations of I-section beams were obtained based on the CLPT and 

Vlasov’s model in the previous sections. Then, to determine the lateral buckling load, the GDQM was employed. In 

the following example, a simply-supported thin-walled member under a variable bending moment (M0, M0), as 

shown in Fig. 2, is considered. All section walls (one web and two flanges) of composite multi-layer I-section beam 

are separately composed of two outer 2024-T3 Aluminium layers with six inner-plies of fiber composite. In the 

present study, the inner fiber-reinforce plies can be made from carbon-epoxy (CARALL) or glass-epoxy (GLARE) 

with the mechanical properties listed in Table 1. It should be noted that in this example, the thicknesses of both 

flanges and web are the same.  
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Fig 2: FML I-shaped beam exposed to end bending moment: wall section arrangement, and geometric data. 

Table 1: Mechanical properties of the materials [55] 

Property (GPa)E1  (GPa)EE 32 =  (GPa)GG 1312 =  1312 υυ =  

Carbon/Epoxy 181 10.3 10.17 0.28 

Glass/Epoxy 38.6 8.27 4.14 0.26 

Al 2027-T3 72.4 72.4 27.2 0.33 

In this section, after confirming the validity of the results, the lateral buckling resistance of laminated composite 

and FML I-shaped beam is compared considering the effect of various parameters such as, end moment ratio, MVFs 

of the web and bot flanges, mode number, and fibers material type. MVF is a dimensionless parameter that is 

defined by the following expression [52]:  

( )Al

Lam

k t
MVF

t


=  (15) 

In this formula, k denotes the Aluminium layers number, tAl and tLam are each Aluminium sheet thickness and the 

total lamina thickness, respectively. Furthermore, MVF equating zero means that there are just polymer fiber 

composite layers and if MVF equates 1, it means that all layers are metal.  

4.1. Verification 

Since the present model has not been investigated up-to-date by other researchers, there is no comparable result 

in the available literature. Therefore, to evaluate the accuracy and validity of the proposed method, the critical 

buckling moment of the simply supported thin-walled FML beam is obtained in which the structure is made of 

orthotropic fibers of glass-epoxy and carbon-epoxy with cross-ply arrangement [Al, 0, 90, 0]S and MVF=0.25 for 21 

nodes across the longitudinal direction (N), and is compared with the results of modelling in ANSYS software in 

terms of end moment coefficient in Fig. 3.  

 

Fig 3: Variation of buckling moment of FML beam having I-shaped cross-section subjected to gradient bending moment with 

respect to the end moment ratio : (a) CARALL section, (b) GLARE section. 

Based on Fig. 3, it can be concluded that the present study results are accurate compared to those obtained by 

ANSYS, and for all values () error percentage is less than 3. 

It should be noted that the Shell281 element in ANSYS simulate the laminated composite thin-walled beam. 
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Shell281 element has eight nodes, and each one has six degrees of freedom (DOF) (three DOF for displacement in 

x, y, z directions; and three DOF for rotation about x, y, z axes), that is appropriate for analysing thin or moderately-

thick members [66]. In all simulated ANSYS models, the applied aspect ratio of the mesh (length-to-maximum 

width) was close to unity through the beam length (Fig. 4a). It is necessary to note that the delamination between the 

fiber composite and Aluminium layers is neglected in the formula presented herein, and a continuous construction is 

supposed. As a result, in 3D modelling using ANSYS software, the above-mentioned assumption has been 

considered, and consequently, a complete linking and connection between the fiber composite layers and metal face-

sheets have been used. It is also assumed that the shear flow is completely transferred from the flanges to the web, 

and thus, in 3D modelling of the joint node at the junction border between the flanges and web has been adopted. In 

this regards, Fig. 4b shows the overall lateral-torsional buckling mode shape of the selected GLARE beam subjected 

to pure bending. In the finite element method (FEM) models, local buckling of the web and both flanges is not 

evident. 

 

 

Fig 4: (a) View of mapped mesh used for the selected beam element under pure bending using ANSYS, (b) the FEM result using 

ANSYS for the first lateral-torsional buckling mode shape. 

4.2. Comparison between buckling moment of FML and composite I-section beam  

The aim of this subdivision is to precisely examine the impact of MVF, the value of , buckling mode number, 

and fiber composite materials on the lateral-torsional stability capacity of the contemplated beam with an I-shaped 

cross-section exposed to the gradient bending load. Referring to the authors’ knowledge, the best typical and 

practical lay-up arrangements for acquiring the highest lateral buckling load is attained by aligning the fiber of both 

flanges at zero degree through the longitudinal direction, and placing the web’s fiber at an angle of 45  between 

two Aluminium sheets [63, 67]. This statement can be expected regarding Eq. (2), because the values of flexural 

stiffness z
EI as well as warping stiffness EI

 are expressed in terms of unidirectional stiffness parameters ( 11 11
,  f wA A   

and 11 11
,  f wD D ). These two components reach their maximum magnitudes when the fibers that construct both flanges 

and the web are aligned in the longitudinal direction with a zero angle. Since the flanges have the responsibility of 

withstanding the flexural and torsional moments, to increase the lateral-torsional stability capacity, the flange fibers 

should be arranged in one direction with a zero-degree angle. Also, according to Eq. (2), the expression of St-

Venant’s torsional rigidity GJ  depends on torsional stiffness components (
66

fD  ,
66

wD ) in both flanges and the web 

of the cross-section. These two parameters usually reach their maximum values by placing the fibers of the 
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composite layers in direction of ±45. Because the beam web withstands shear stresses and has the task of 

transmitting shear force, the fiber layers of the web must be placed at an angle of ±45 to achieve the maximum 

shear capacity. Motivated by these facts, the most appropriate practical lay-up arrangements of both the 

flanges 3[ , (0) ]SAl  and the web 3[ ,(45) ]SAl is contemplated in the continuation. In this regard, the selected I-section 

beams with FML hybrid structure of (glass-epoxy or carbon-epoxy) with two outer Aluminium layers, as shown in 

Fig. 2, are analysed. For this purpose, the 1st buckling moment variations in terms of end moment coefficient () 

have been perused, in which the Aluminium volume fraction increases at each step, and the results for both material 

fibers are presented in Fig. 5. Similarly, the impact of volume fraction parameter on the variation of the 2nd buckling 

moment of simply supported I-shaped beams with respect to end moment ratio () for two different fibrous 

materials (glass/epoxy and carbon/epoxy) is given in Fig. 6.  

 

Fig 5: Variation of the lowest buckling moment of FML beam having I-shaped cross-section subjected to gradient bending moment 

with respect to  and for four different MVFs: (a) CARALL section, (b) GLARE section. 

 

 

Fig 6: Variation of the 2nd buckling moment of FML beam having I-shaped cross-section subjected to gradient bending moment with 

respect to  and for four different MVFs: (a) CARALL section, (b) GLARE section. 

In the following, the magnitude of first two buckling moments (Mcr) for various values of end moment ratios () 

with three different Aluminium volume fractions (MVF=0.3, 0.6 and 0.9) are tabulated in Table 2. Two types of 

FML are considered: GLARE and CARALL I-shaped beams with constant cross-section. 

Table 2: The first two buckling moments (Mcr) for FML I-beam with different materials and subjected to different gradient moments. 

Material  
The first buckling moment (N.m) The second buckling moment (N.m) 

MVF=0.3 MVF=0.6 MVF=0.9 MVF=0.3 MVF=0.6 MVF=0.9 

GLARE 

+1 258.912 324.572 379.673 895.123 1115.107 1322.841 

+0.8 287.365 360.238 421.398 995.325 1239.934 1470.923 

+0.6 321.858 403.473 471.989 1123.015 1399.003 1659.630 

+0.4 364.011 456.297 533.827 1291.578 1608.981 1908.752 

+0.2 415.645 520.986 609.600 1522.543 1896.660 2250.145 

0 478.300 599.453 701.590 1845.979 2299.407 2728.381 
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-0.2 551.918 691.609 809.730 2279.719 2839.286 3370.022 

-0.4 632.085 791.945 927.520 2732.759 3403.471 4039.806 

-0.6 705.209 883.537 1034.857 2634.441 3282.769 3891.959 

-0.8 741.984 929.804 1088.546 1981.642 2468.937 2928.110 

-1 707.607 886.882 1037.889 1659.301 2066.942 2452.375 

CARALL 

+1 672.308 560.957 438.822 2528.385 2047.696 1555.922 

+0.8 746.226 622.622 487.053 2811.419 2276.921 1730.096 

+0.6 835.960 697.449 545.550 3172.125 2569.048 1952.059 

+0.4 945.858 789.022 617.085 3648.456 2954.778 2245.108 

+0.2 1080.927 901.444 704.805 4301.921 3483.753 2646.815 

0 1245.595 1038.290 811.409 5219.866 4226.090 3209.941 

-0.2 1440.088 1199.636 936.871 6456.570 5224.720 3966.271 

-0.4 1652.384 1375.614 1073.599 7740.262 6263.487 4754.706 

-0.6 1844.099 1535.077 1197.926 7415.370 6012.790 4574.297 

-0.8 1935.221 1612.354 1259.368 5589.167 4528.820 3442.935 

-1 1841.615 1535.456 1200.196 4690.693 3797.923 2885.004 

The next part investigates precisely the effect of increasing the metal volume fraction on the lateral-torsional 

buckling capacity. Again, the beam with a more appropriate lay-up configurations of carbon-epoxy (CARALL) and 

glass-epoxy (GLARE), which mentioned earlier, is considered. The variation of the critical lateral moment, for 

varying values of MVF, ranging from 0.0 to 1, is presented in Fig. 7 under the assumption of  =-1, 0, and 1 (end 

moment ratio).  
 

 

Fig 7: Variation of buckling moment of FML beam having I-shaped cross-section subjected to gradient bending moment with respect 

to MVF and for three different end moment parameters (): (a) CARALL section, (b) GLARE section. 

As shown in Figs. 5-7, the buckling moment capacity for all values of the end moment coefficient for an FML 

hybrid beam consisting of six layers of glass-epoxy increases significantly by enhancing the Aluminium volume 

fraction percentage. Whereas, in the case of CARALL, the opposite trend is observed. This decreasing pattern can 

be observed for the first two buckling moments. It means that increasing the MVF leads to a reduction in the value 

of the critical bending moment of CARALL I-beam. For the loading case considered in this example (Fig. 5), the 

first buckling moment for a prismatic GLARE I-shape member under pure bending (=1) enhances by about 34%, 

when the metal percentage increases from 0 to 20%. As may be seen in the case of CARALL uniform I-beam 

exposed to pure bending, the volume fraction Aluminium equals MVF=0.2 reduces the magnitude of the buckling 

moment by about 7.67% compared to the conditions without two metal face-sheets (MVF=0). Also, according to 

Figs. 5 to 7 and Table 2, it can be seen that CARALL sections always have more lateral stability capacity. Since the 

elastic material characteristics and the modulus of elasticity of carbon/epoxy are more than glass/epoxy (Table 1), 

this outcome is expectable. For both CARALL and GLARE thin-walled laminated I-beams and different MVFs 

(Figs. 5 and 6), the variation of the beam lateral stability strength with  for different buckling modes is non-linear. 

As presented by these illustrations, it can be found that the most stable state against the 1st buckling moment for all 
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the cases analysed occurs at =-0.8, and, as expected, the most unstable condition occurs under the pure bending 

(=1). Additionally, the maximum second buckling moment is obtained for =-0.5. These outcomes concord with 

the previous results presented for homogenous beams with an I-shaped cross-section [68].  

Subsequently, Fig. 8 illustrates the variation of the lowest buckling moments with respect to the aluminium 

percentage in the web and the flanges by setting the end moment parameter () equals -0.8.  

 

 

Fig 8: Variation of buckling moment of fiber-metal laminated beam with constant I-section for different web and flange MVFs: 

(a) GLARE, (b) CARALL. 

From these graphical representations, it is again found that the values of MVF of the web and both flanges have a 

remarkable influence on the lateral stability strength of simply supported FML I-section beams exposed to gradient 

bending moment. It is easily recognized that the critical moment of GLARE beams with I-shaped cross-section 

increases with an increase in the metal percentages of the web and/or flanges, as a result of the enhancement of all 

stiffness quantities of the elastic member including the flexural and torsional rigidities. In contrast to GLARE beam, 

the critical moment of CARALL member with carbon-epoxy inner layers diminishes when the flanges’ MVF is 

increased from 0 to 1, but with increasing the Aluminium percentage of the web, this pattern is converted. In 

addition, it can be stated that this interesting phenomenon is negligible on the lateral buckling capacity of CARALL 

I-section beams by the simultaneous increment of MVF in all section walls. Finally, it is obvious that the influence 

of the percentage of metal in both flanges on the value of buckling moments is more predominant than that of MVF 

of the web. The reason is attributed to the fact that the lateral-torsional instability mode occurs about the minor 

moment of the inertia axis. 

5. Conclusions 

In this work, the endurable lateral buckling loads of FML and laminated composite beams with an I-shaped 

cross-section under transverse loadings are compared to each other. Initially, the two-coupled fourth-order stability 

differential equations in terms of the lateral displacement and the twisting angle were derived according to Vlasov’s 

model along with the CLPT. Then, differential equations were discretized using the GDQ numerical approach, and 

the lateral buckling load was calculated. After verifying the correctness of the results, the lateral stability strength of 

FML and laminated composite beams with I-shaped cross-sections having the conventional lay-up sequences are 

contrasted through various parameters such as composite material, end moment ratio, mode number, and metal 

(b) 

(a) 
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volume fractions of the web and both flanges. After reviewing the numerical examples, the following significant 

findings are expressed below: 

• It can be obtained that the most stable condition against lateral-torsional buckling for all the analysed cases 

occurs at =-0.8 and, as expected, the most unstable condition occurs in the pure bending condition (=1). 

• The results indicated that for glass-epoxy beam elements, the lateral stability enhances significantly by 

increasing the metal volume fraction. The opposite of this trend can be seen in the case of the carbon-epoxy 

cross-section. 

• For GLARE I-beam, it is seen that the first buckling moment associated with pure bending increases 

approximately 34% by raising the metal volume percentage from 0% to 20%. 

• It can be stated that the effect of changing the percentage of metal on the thickness of both flanges is more 

pronounced than the one related to the web. 

• Regarding to the presented results, it is detected that carbon-epoxy members with different volume fractions 

always and exposed to different end moment ratio have more lateral stability resistance than glass-epoxy ones. 
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