Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, University of Eyvanekey, Eyvanekey, Semnan, Iran

2 Department of Mechanical Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran

3 Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Iran

Abstract

In this study, dynamic analysis of functionally graded carbon nanotube reinforced composite (FGCNT) beam resting on viscoelastic foundation is investigated. Four different types of carbon nanotubes (CNTs) distribution including uniform (UD-CNT), and three types of functionally graded distribution of CNTs through the thickness of beam‌‌ are‌ considered. The Kelvin–Voigt viscoelastic model and higher-order shear deformation beam theory (HOBT) have been used. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The equations of motion are derived by using Lagrange’s equations, and solved by using finite element and Newmark methods. The effects of volume fraction and distribution of CNTs, stiffness and damping of viscoelastic foundation, slenderness ratio and different boundary conditions on transverse displacement and stresses of beam are investigated. The results show that by using viscoelastic foundation the amount of normal and shear stress have decreased considerably, and by increasing the stiffness coefficient of foundation, transverse displacement of beam reduces and the frequency of vibration increases as well, meanwhile by increasing the damping coefficient of foundation, amplitude of vibration decreases considerably. The model is verified and compared with previously published works and it shows good agreement.

Keywords

[1] G. Shi, K. Y. Lam, Finite Element Vibration Analysis of Composite Beams Based on higher-order Beam Theory, Journal of Sound and Vibration, Vol. 219, No. 4, pp. 707-721, 1999.
[2] B. V. Sankar, An elasticity solution for functionally graded beams, Composites Science and Technology, Vol. 61, No. 5, pp. 689–696, 2001.
[3] Y. H. Chen, Y. H. Hung, Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load, Journal of Sound and Vibration, Vol. 241, No. 5, pp. 809-824, 2001.
[4] A. Chakraborty, S. Gopalakrishnan, J. N. Reddy, A new beam finite element for the analysis of functionally, International Journal of Mechanical Sciences, Vol. 45, No. 3, pp. 519-539, 2003.
[5] M. H. Kargarnovin, D. Younesian, Dynamics of Timoshenko beams on Pasternak foundation under moving load, Mechanics Research Communicatins, Vol. 31, No. 6, pp. 713-723, 2004.
[6] J. Yang, Y. Chen, Y. Xiang, X.L. Jia, Free and forced vibration of cracked inhomogeneous beams, Journal of Sound and Vibration, vol 312, No. 1, pp. 166-181, 2008.
[7] R. Kadoli, K. Akhtar, N. Ganesan, Static analysis of functionally graded beams using higher order shear deformation theory, Applied Mathematical Modelling, Vol. 32, No.12, pp. 2509–2525, 2008.
[8] J. Ying, C. F. Lu, W. Q. Chen, Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations, Composite Structures, Vol 84, No. 3, pp. 209–219, 2008.
[9] F. F. Calım, Dynamic analysis of beams on viscoelastic foundation, European Journal of Mechanics A/Solids, Vol. 28, No. 3, pp. 469–476, 2009.
[10] M. Simsek, T. Kocatürk, Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load, Composite Structures, Vol. 90, No. 4, pp. 465–473, 2009.
[11] M. Simsek, Non-linear vibration analysis of a functionally graded Timoshenko beam, under action of a moving harmonic load, Composite Structures, Vol 92, No. 10, pp. 2532–2546, 2010.
[12] S. khalili, S. A. Eftekhari, A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads, Composite Structures, Vol. 92, No. 10, pp. 2497-2511, 2010.
[13] S. R. Mohebpour, A. R. Fiouz, A. A. Ahmadzadeh, Dynamic investigation of laminated composite beams with shear and rotary inertia effect subjected to the moving oscillators using FEM, Composite Structures, Vol 93, No. 3, pp. 1118–1126, 2011.
­[14] K. K. Pradhan, S. Chakraverty, Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method, Composites, Vol. B51, pp. 175–184, 2013.
[15] S. M. Abdelghany, K. M. Ewis, A. A. Mahmoud, M. M. Nassar, Dynamic response of non-uniform beam subjected to moving load and resting on non-linear viscoelastic foundation, Journal of Basic Applied Science, Vol. 4, No. 3, pp. 192-199, 2015.
[16] F. Kiarasi, M. Babaei, R. Dimitri, F. Tornabene, Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation. Continuum Mechanics and Thermodynamics, Vol. 33, No. 4, pp. 911-932, 2021.
[17] K. T. Lau, C. Gu, G. H. Gao, H. Y. Ling, S. R. Reid, Stretching process of single- and multi-walled carbon nanotubes for nanocomposite applications, Carbon, Vol. 42, No. 2, pp. 426-428, 2004.
­[18] A. M. K. Esawi, M. M. Farag, Carbon nanotube reinforced composites: potential and current challenges, Material and Design, Vol. 28, No. 9, pp. 2394-2401, 2007.
[19] F. Kiarasi, M. Babaei, P. Sarvi, K. Asemi, M. Hosseini, M. Omidi Bidgoli, A review on functionally graded porous structures reinforced by graphene platelets. Journal of Computational Applied Mechanics, Vol. 52, No. 4, pp. 731-750, 2021.
[20] F. Kiarasi, M. Babaei, M. Mollaei, S. M. Mohammadi, K. Asemi, Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets. Advances in nano research, Vol. 11, No. 4, pp. 361-380, 2021.
[21] M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, The European Physical Journal Plus, Vol. 132, pp. 393, 2017.
[22] A. Barati, A. Hadi, M. Z. Nejad, R. Noroozi, On vibration of bi-directional functionally graded nanobeams under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-18, 2020.
[23] A. Barati, M. Mousavi Khoram, M. Shishesaz, M. Hosseini, Size-dependent thermoelastic analysis of rotating nanodisks of variable thickness, Journal of Computational Applied Mechanics, Vol. 51, pp. 340-360, 2020.
 [24] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.
[25] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, pp. 663-672, 2018.
[26] H. Haghshenas Gorgani, M. Mahdavi Adeli, and M. Hosseini, Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches, Microsystem Technologies, vol. 25, pp. 3165-3173, 2019.
[27] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[28] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials," International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
[29] M. Shahsavari, K. Asemi, M. Babaei, F. Kiarasi, Numerical investigation on thermal post-buckling of annular sector plates made of FGM via 3D finite element method. Mechanics of Advanced Composite Structures, Vol. 8, No. 2, pp. 309-320, 2021.
[30] M. Babaei, F. Kiarasi, S. M. Hossaeini Marashi, M. Ebadati, F. Masoumi, K. Asemi, Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical–cylindrical–conical shell. Waves in Random and Complex Media, pp. 1-33, 2021.
[31] H. Nazari, M. Babaei, F. Kiarasi, K. Asemi, Geometrically nonlinear dynamic analysis of functionally graded material plate excited by a moving load applying first-order shear deformation theory via generalized differential quadrature method. SN Applied Sciences, Vol. 3, No. 11, pp. 1-32, 2021.
[32] M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces and Resting on Winkler–Pasternak Foundation, International Journal of Applied Mechanics, Vol. 12, pp. 2050093, 2020.
[33] R. Mahmoudi, A. Barati, M. Hosseini, A. Hadi, Torsional Vibration of Functionally Porous Nanotube Based on Nonlocal Couple Stress Theory, International Journal of Applied Mechanics, Vol. 13, No. 10, pp. 2150122, 2021.
[34] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019.
 [35] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[36] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016
[37] M. Shishesaz, M. Hosseini, Mechanical Behavior of Functionally Graded Nano-Cylinders Under Radial Pressure Based on Strain Gradient Theory, Journal of Mechanics, Vol. 35, pp. 441-454, 2018.
[38] M. Shishesaz, M. Hosseini, K. Naderan Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, pp. 4141-4168, 2017.
[39] A. P. Praveen, V. Rajamohan, A. T. Mathew, Recent developments in investigation on buckling and post buckling responses of laminated composite shells. Polymer Composites, Vol. 39, No. 12, pp. 4231-4242, 2018.
[40] D. T. Dong, V. H. Nam, N. T. Phuong, L. N. Ly, V. M. Duc, N. Van Tien, P. H. Quan, An analytical approach of nonlinear buckling behavior of longitudinally compressed carbon nanotube‐reinforced (CNTR) cylindrical shells with CNTR stiffeners in thermal environment. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, e202100228, 2021.
[41] P. T. Hieu, H. Van Tung, Buckling of shear deformable FG‐CNTRC cylindrical shells and toroidal shell segments under mechanical loads in thermal environments. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 100, No. 11, e201900243, 2020.
[42] M. Babaei, K. Asemi, Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation. SN Applied Sciences, Vol. 2, No. 10, pp. 1-21, 2020.
[43] M. Hosseini, H. H. Gorgani, M. Shishesaz, and A. Hadi, Size-Dependent Stress Analysis of Single-Wall Carbon Nanotube Based on Strain Gradient Theory, International Journal of Applied Mechanics, Vol. 09, pp. 1750087, 2017.
[44] K. M. Liew, Z. X. Lei, L. W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Composite Structures, Vol. 120, pp. 90-97, 2015.
[45] B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte, K. Schulte, Fundamental aspects of nano-reinforced composites, Composites science and technology, Vol. 66, No. 16, pp. 3115-3125, 2006.
[46] S. Ahmad, D. Kia, H. Amin, N. Mohamad Hasan, Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory, Steel and Composite Structures, An International Journal, Vol. 30, pp. 517-534, 2019.
 [47] M. Najafzadeh, M. M. Adeli, E. Zarezadeh, A. Hadi, Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field, Mechanics Based Design of Structures and Machines, Vol. 50, pp. 726-740, 2022.
[48] G. R. Liu, A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Composite structures, Vol. 40, No, 3-4, pp. 313-322, 1997.
[49] N. Bendenia, M. Zidour, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, A. Tounsi, Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Computers and Concrete, An International Journal, Vol. 26, No. 3, pp. 213-226, 2020.
[50] Kiani, Y. Thermal post-buckling of FG-CNT reinforced composite plates. Composite Structures, Vol. 159, pp. 299-306, 2017.
[51] J. Wuite, S. Adali, Deflection and Stress behavior of nanocomposite reinforced beams using multiscale analysis, Composite Structures, Vol. 71, No. 3, pp. 388-396, 2005.
­[52] T. Vodenitcharova, L. C. Zhang, Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube, International journal of solids and structures, Vol. 43, No. 10, pp. 3006-3024, 2006
­[53] Ke LL, Yang J, Kitipornchai S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Composite Structure,Vol. 92, No. 3, pp. 676-683, 2010.
­[54] M. H. Yas, M. Heshmati, Dynamic analysis of functionally graded nanocomposite beam reinforced by randomly oriented carbon nanotube under the action of moving load, Applied Mathematical Modelling, Vol. 36, No. 4, pp. 1371-1394, 2012.
[55] H. S. Shen, Y. Xiang, Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Engineering Structures, Vol. 56, pp. 698-708, 2013.
[56] L. L. Ke, J. Yang, S. Kitipornchai, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mechanics of Advanced Materials and Structures, Vol. 20, No. 1, pp. 28-37, 2013.
­[57] ­­ R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, F. Sadeghi, Nonlinear force vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams, Composite Structures, Vol. 113, pp. 316-327, 2014.
[58] F. Lin, Y. Xiang, Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories, Applied Mathematical Modelling, Vol. 38, No. 15, pp. 3741-3754, 2014.
[59] V. K. Chaudhari, A. Lal, Nonlinear free vibration analysis of elastically supported nanotube- reinforced composite beam in thermal environment, Procedia Engineering, Vol. 144, pp. 928 – 935, 2016.
[60] R. Zerrouki, A. Karas, M. Zidour, A. A. Bousahla, A. Tounsi, F. Bourada, S. R. Mahmoud, Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Structural Engineering and Mechanics, Vol. 78, No. 2, pp. 117-124, 2021.
[61] L. W. Zhang, Z. X. Lei, K. Liew, Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Composites Part B: Engineering, Vol. 75, pp. 36-46, 2015.
[62] F. Ebrahimi, M. R. Barati, Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory. Acta Mechanica Solida Sinica, Vol. 29, No. 5, pp. 547-554, 2016.
[63] A. J. M. Ferreira, C. M. C. Roque, P. A. L. S. Martins, Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Composite structures, Vol. 66, No. 1-4, pp. 287-293, 2014.
[64] R. M. Jones, Mechanics of composite materials. CRC press, 2018.
[65] M. Babaei, K. Asemi, P.Safarpour, Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory. Journal of Solid Mechanics, Vol. 11, No. 3, pp. 615-634, 2019.
[66] M.Babaei, K. Asemi, P. Safarpour, Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory. Iranian Journal of Mechanical Engineering Transactions of the ISME, Vol. 20, No. 1, pp. 94-112, 2019.
[67] A. D. Kerr, Elastic and viscoelastic foundation models, 1964.
[68] K. Asemi, M. Babaei, F. Kiarasi, Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets. Mechanics Based Design of Structures and Machines, pp. 1-29, 2020.
[69] M. Babaei, K. Asemi, F. Kiarasi, Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials. Thin-Walled Structures, Vol. 164, pp. 107852, 2021.
[70] O. Bourihane, Y. Hilali, K. Mhada, Nonlinear dynamic response of functionally graded material plates using a high‐order implicit algorithm. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 100, No. 12, e202000087, 2020.
[71] S. Pandey, S. Pradyumna, Thermal shock analysis of functionally graded sandwich curved beams using a new layerwise theory. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, e202100020, 2021.
[72] M. Shariati, M. Shishesaz, R. Mosalmani, S. A. Seyed Roknizadeh, M. Hosseini, Nonlocal effect on the axisymmetric nonlinear vibrational response of nano-disks using variational iteration method, Journal of Computational Applied Mechanics, Vol. 52, pp. 507-534, 2021.
 [73] I. Eshraghi, S. Dag, Forced vibrations of functionally graded annular and circular plates by domain‐boundary element method. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 100, No. 8, e201900048, 2020.
[74] R. Damghanian, K. Asemi, M. Babaei, A new beam element for static, free and forced vibration responses of microbeams resting on viscoelastic foundation based on modified couple stress and third-order beam theories. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, pp. 1-17, 2020.
[75] M. Babaei, M. H. Hajmohammad, K. Asemi, Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity. Aerospace Science and Technology, Vol. 96, pp. 105524, 2020.
Volume 53, Issue 1
March 2022
Pages 1-23
  • Receive Date: 12 January 2022
  • Revise Date: 12 February 2022
  • Accept Date: 05 March 2022
  • First Publish Date: 05 March 2022