[1] A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
[2] A. Kordzadeh, A. R. Saadatabadi, A. Hadi, Investigation on penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation, Heliyon, Vol. 6, No. 12, pp. e05681, 2020.
[3] A. Hadi, A. Rastgoo, A. Bolhassani, N. Haghighipour, Effects of stretching on molecular transfer from cell membrane by forming pores, Soft Materials, Vol. 17, No. 4, pp. 391-399, 2019.
[4] M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, The European Physical Journal Plus, Vol. 132, No. 9, pp. 393, 2017/09/18, 2017.
[5] E. C. Aifantis, Strain gradient interpretation of size effects, in: Z. P. Bažant, Y. D. S. Rajapakse, Fracture Scaling, Eds., pp. 299-314, Dordrecht: Springer Netherlands, 1999.
[6] M. S. H. Al-Furjan, M. Habibi, F. Ebrahimi, G. Chen, M. Safarpour, H. Safarpour, A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem, The European Physical Journal Plus, Vol. 135, No. 10, pp. 837, 2020/10/16, 2020.
[7] R. Ansari, R. Hassani, E. Hasrati, H. Rouhi, Geometrically nonlinear vibrations of FG-GPLRC cylindrical panels with cutout based on HSDT and mixed formulation: a novel variational approach, Acta Mechanica, 2021/06/26, 2021.
[8] A. Barati, A. Hadi, M. Z. Nejad, R. Noroozi, On vibration of bi-directional functionally graded nanobeams under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-18, 2020.
[9] O. Civalek, M. H. Jalaei, Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method, Acta Mechanica, Vol. 231, No. 6, pp. 2565-2587, 2020/06/01, 2020.
[10] F. Ebrahimi, A. Dabbagh, T. Rabczuk, On wave dispersion characteristics of magnetostrictive sandwich nanoplates in thermal environments, European Journal of Mechanics - A/Solids, Vol. 85, pp. 104130, 2021/01/01/, 2021.
[11] F. Ebrahimi, A. Dabbagh, A. Rastgoo, Static stability analysis of multi-scale hybrid agglomerated nanocomposite shells, Mechanics Based Design of Structures and Machines, pp. 1-17, 2020.
[12] F. Ebrahimi, S. H. S. Hosseini, Parametrically excited nonlinear dynamics and instability of double-walled nanobeams under thermo-magneto-mechanical loads, Microsystem Technologies, Vol. 26, No. 4, pp. 1121-1132, 2020/04/01, 2020.
[13] M. Emadi, M. Z. Nejad, S. Ziaee, A. Hadi, Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method, Steel and Composite Structures, Vol. 39, No. 5, pp. 565-581, 2021.
[14] A. C. Eringen, D. G. B. Edelen, On nonlocal elasticity, International Journal of Engineering Science, Vol. 10, No. 3, pp. 233-248, 1972/03/01/, 1972.
[15] M. R. Farajpour, A. R. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mechanics of Advanced Materials and Structures, Vol. 26, No. 17, pp. 1469-1481, 2019/09/02, 2019.
[16] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.
[17] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018.
[18] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Vol. 26, 03/25, 2018. En
[19] H. Haghshenas Gorgani, M. Mahdavi Adeli, M. Hosseini, Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches, Microsystem Technologies, Vol. 25, No. 8, pp. 3165-3173, 2019/08/01, 2019.
[20] Y. Heidari, M. Arefi, M. Irani-Rahaghi, Free Vibration Analysis of Cylindrical Micro/Nano-Shell Reinforced with CNTRC Patches, International Journal of Applied Mechanics, Vol. 0, No. 0, pp. 2150040.
[21] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-Dependent Stress Analysis of Single-Wall Carbon Nanotube Based on Strain Gradient Theory, International Journal of Applied Mechanics, Vol. 09, No. 06, pp. 1750087, 2017/09/01, 2017.
[22] M. Hosseini, A. Hadi, A. Malekshahi, M. Shishesaz, A review of size-dependent elasticity for nanostructures, Journal of Computational Applied Mechanics, Vol. 49, No. 1, pp. 197-211, 2018. en
[23] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[24] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016/12/01/, 2016.
[25] K. Huang, Y. Yin, B. Qu, Tight-binding theory of graphene mechanical properties, Microsystem Technologies, 2021/05/20, 2021.
[26] M. M. Khoram, M. Hosseini, A. Hadi, M. Shishehsaz, Bending Analysis of Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces and Resting on Winkler–Pasternak Foundation, International Journal of Applied Mechanics, Vol. 12, No. 08, pp. 2050093, 2020.
[27] A. Koochi, M. Abadyan, S. Gholami, Electromagnetic instability analysis of nano-sensor, The European Physical Journal Plus, Vol. 136, No. 1, pp. 44, 2021/01/05, 2021.
[28] R. Kumar, R. Kumar, Effect of two-temperature parameter on thermoelastic vibration in micro and nano beam resonator, European Journal of Mechanics - A/Solids, Vol. 89, pp. 104310, 2021/08/01/, 2021.
[29] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics - A/Solids, Vol. 77, pp. 103793, 2019/09/01/, 2019.
[30] M. Mousavi Khoram, M. Hosseini, M. Shishesaz, A concise review of nano-plates, Journal of Computational Applied Mechanics, Vol. 50, No. 2, pp. 420-429, 2019.
[31] I. M. Nazmul, I. Devnath, Closed-form expressions for bending and buckling of functionally graded nanobeams by the Laplace transform, International Journal of Computational Materials Science and Engineering, Vol. 0, No. 0, pp. 2150012.
[32] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016/08/01/, 2016.
[33] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016/06/01/, 2016.
[34] F. P. Pinnola, S. A. Faghidian, R. Barretta, F. Marotti de Sciarra, Variationally consistent dynamics of nonlocal gradient elastic beams, International Journal of Engineering Science, Vol. 149, pp. 103220, 2020/04/01/, 2020.
[35] Y.-M. Ren, H. Qing, Bending and Buckling Analysis of Functionally Graded Euler–Bernoulli Beam Using Stress-Driven Nonlocal Integral Model with Bi-Helmholtz Kernel, International Journal of Applied Mechanics, Vol. 0, No. 0, pp. 2150041.
[36] G. Romano, R. Luciano, R. Barretta, M. Diaco, Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours, Continuum Mechanics and Thermodynamics, Vol. 30, No. 3, pp. 641-655, 2018/05/01, 2018.
[37] A. F. Russillo, G. Failla, G. Alotta, F. Marotti de Sciarra, R. Barretta, On the dynamics of nano-frames, International Journal of Engineering Science, Vol. 160, pp. 103433, 2021/03/01/, 2021.
[38] M. M. Selim, Torsional vibration of irregular single-walled carbon nanotube incorporating compressive initial stress effects, Journal of Mechanics, Vol. 37, pp. 260-269, 2021.
[39] R. Selvamani, S. Mahesh, F. Ebrahimi, Refined couple stress dynamic modeling of thermoelastic wave propagation reaction of LEMV/CFRP composite cylinder excited by multi relaxation times, Waves in Random and Complex Media, pp. 1-20, 2021.
[40] A. Shahabodini, R. Ansari, H. Rouhi, A three-dimensional surface elastic model for vibration analysis of functionally graded arbitrary straight-sided quadrilateral nanoplates under thermal environment, Journal of Mechanics, Vol. 37, pp. 72-99, 2020.
[41] G.-L. She, H.-B. Liu, B. Karami, Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets, Thin-Walled Structures, Vol. 160, pp. 107407, 2021/03/01/, 2021.
[42] M. Shishesaz, M. Hosseini, Mechanical Behavior of Functionally Graded Nano-Cylinders Under Radial Pressure Based on Strain Gradient Theory, Journal of Mechanics, Vol. 35, No. 4, pp. 441-454, 2018.
[43] M. Shishesaz, M. Hosseini, K. Naderan Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017/12/01, 2017.
[44] B. Uzun, Ö. Civalek, M. Ö. Yaylı, Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions, Mechanics Based Design of Structures and Machines, pp. 1-20, 2020.
[45] M. S. Vaccaro, F. Marotti de Sciarra, R. Barretta, On the regularity of curvature fields in stress-driven nonlocal elastic beams, Acta Mechanica, 2021/04/26, 2021.
[46] P. Wang, P. Yuan, S. Sahmani, B. Safaei, Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA, Thin-Walled Structures, Vol. 166, pp. 108101, 2021/09/01/, 2021.
[47] E. Zarezadeh, V. Hosseini, A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, Mechanics Based Design of Structures and Machines, pp. 1-16, 2019.
[48] G. Zhu, A. Zine, C. Droz, M. Ichchou, Wave transmission and reflection analysis through complex media based on the second strain gradient theory, European Journal of Mechanics - A/Solids, Vol. 90, pp. 104326, 2021/11/01/, 2021.
[49] H. T. Zhu, H. M. Zbib, E. C. Aifantis, Strain gradients and continuum modeling of size effect in metal matrix composites, Acta Mechanica, Vol. 121, No. 1, pp. 165-176, 1997/03/01, 1997.
[50] M. Shishesaz, M. Shariati, A. Yaghootian, A. Alizadeh, Nonlinear Vibration Analysis of Nano-Disks Based on Nonlocal Elasticity Theory Using Homotopy Perturbation Method, International Journal of Applied Mechanics, Vol. 11, No. 02, pp. 1950011, 2019.
[51] A. Barati, M. M. Adeli, A. Hadi, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, Vol. 12, No. 02, pp. 2050021, 2020.
[52] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
[53] K. Dehshahri, M. Z. Nejad, S. Ziaee, A. Niknejad, A. Hadi, Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates, Advances in nano research, Vol. 8, No. 2, pp. 115-134, 2020.
[54] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.
[55] M. Moraveji, H. Keshvari, A. Karkhaneh, S. Bonakdar, A. Hadi, N. Haghighipour, The effect of collagen/polycaprolactone fibrous scaffold decorated with graphene nanoplatelet and low-frequency electromagnetic field on neuronal gene expression by stem cells, Advances in nano research, Vol. 10, No. 6, pp. 549-557, 2021.
[56] M. Najafzadeh, M. M. Adeli, E. Zarezadeh, A. Hadi, Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field, Mechanics Based Design of Structures and Machines, pp. 1-15, 2020.
[57] H. Nekounam, R. Dinarvand, R. Khademi, F. Asghari, N. Mahmoodi, H. Arzani, E. Hasanzadeh, A. Hadi, R. Karimi, M. Kamali, Preparation of cationized albumin nanoparticles loaded indirubin by high pressure hemogenizer, bioRxiv, 2021.
[58] A. Soleimani, K. Dastani, A. Hadi, M. H. Naei, Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory, Steel and Composite Structures, Vol. 30, No. 6, pp. 517-534, 2019.
[59] M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, Structural engineering and mechanics: An international journal, Vol. 67, No. 4, pp. 417-425, 2018.
[60] R. Barretta, S. A. Faghidian, R. Luciano, C. Medaglia, R. Penna, Stress-driven two-phase integral elasticity for torsion of nano-beams, Composites Part B: Engineering, Vol. 145, pp. 62-69, 2018.
[61] R. Barretta, M. Diaco, L. Feo, R. Luciano, F. M. de Sciarra, R. Penna, Stress-driven integral elastic theory for torsion of nano-beams, Mechanics Research Communications, Vol. 87, pp. 35-41, 2018.
[62] R. Barretta, S. A. Faghidian, R. Luciano, Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mechanics of Advanced Materials and Structures, Vol. 26, No. 15, pp. 1307-1315, 2019.
[63] A. Apuzzo, R. Barretta, F. Fabbrocino, S. A. Faghidian, R. Luciano, F. Marotti de Sciarra, Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity, Journal of Applied and Computational Mechanics, Vol. 5, No. 2, pp. 402-413, 2019.
[64] P.-L. Bian, H. Qing, C.-F. Gao, One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: Close form solution and consistent size effect, Applied Mathematical Modelling, Vol. 89, pp. 400-412, 2020.
[65] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[66] G. Romano, R. Barretta, Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, Vol. 115, pp. 14-27, 2017.
[67] G. Romano, R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Composites Part B: Engineering, Vol. 114, pp. 184-188, 2017.
[68] G. Romano, R. Barretta, M. Diaco, F. M. de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Sciences, Vol. 121, pp. 151-156, 2017.
[69] A. Apuzzo, R. Barretta, R. Luciano, F. M. de Sciarra, R. Penna, Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Composites Part B: Engineering, Vol. 123, pp. 105-111, 2017.
[70] R. Barretta, S. Fazelzadeh, L. Feo, E. Ghavanloo, R. Luciano, Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type, Composite Structures, Vol. 200, pp. 239-245, 2018.
[71] M. F. Oskouie, R. Ansari, H. Rouhi, Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach, Acta Mechanica Sinica, Vol. 34, No. 5, pp. 871-882, 2018.
[72] M. Faraji Oskouie, R. Ansari, H. Rouhi, A numerical study on the buckling and vibration of nanobeams based on the strain and stress-driven nonlocal integral models, International Journal of Computational Materials Science and Engineering, Vol. 7, No. 03, pp. 1850016, 2018.
[73] M. F. Oskouie, R. Ansari, H. Rouhi, Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams, The European Physical Journal Plus, Vol. 133, No. 8, pp. 336, 2018.
[74] R. Barretta, F. Fabbrocino, R. Luciano, F. M. de Sciarra, Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams, Physica E: Low-dimensional Systems and Nanostructures, Vol. 97, pp. 13-30, 2018.
[75] R. Barretta, S. A. Faghidian, R. Luciano, C. Medaglia, R. Penna, Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models, Composites Part B: Engineering, Vol. 154, pp. 20-32, 2018.
[76] R. Barretta, R. Luciano, F. M. de Sciarra, G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, European Journal of Mechanics-A/Solids, Vol. 72, pp. 275-286, 2018.
[77] R. Barretta, M. Čanađija, R. Luciano, F. M. de Sciarra, Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams, International Journal of Engineering Science, Vol. 126, pp. 53-67, 2018.
[78] E. Mahmoudpour, S. Hosseini-Hashemi, S. Faghidian, Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model, Applied Mathematical Modelling, Vol. 57, pp. 302-315, 2018.
[79] R. Barretta, A. Caporale, S. A. Faghidian, R. Luciano, F. M. de Sciarra, C. M. Medaglia, A stress-driven local-nonlocal mixture model for Timoshenko nano-beams, Composites Part B: Engineering, Vol. 164, pp. 590-598, 2019.
[80] F. P. Pinnola, M. S. Vaccaro, R. Barretta, F. M. de Sciarra, Random vibrations of stress-driven nonlocal beams with external damping, Meccanica, pp. 1-16, 2020.
[81] M. Roghani, H. Rouhi, Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs, Continuum Mechanics and Thermodynamics, pp. 1-13, 2020.
[82] A. Apuzzo, C. Bartolomeo, R. Luciano, D. Scorza, Novel local/nonlocal formulation of the stress-driven model through closed form solution for higher vibrations modes, Composite Structures, Vol. 252, pp. 112688, 2020.
[83] R. Barretta, F. Fabbrocino, R. Luciano, F. M. De Sciarra, G. Ruta, Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mechanics of Advanced Materials and Structures, Vol. 27, No. 11, pp. 869-875, 2020.
[84] H. Darban, F. Fabbrocino, L. Feo, R. Luciano, Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model, Mechanics of Advanced Materials and Structures, pp. 1-9, 2020.
[85] R. Luciano, A. Caporale, H. Darban, C. Bartolomeo, Variational approaches for bending and buckling of non-local stress-driven Timoshenko nano-beams for smart materials, Mechanics Research Communications, Vol. 103, pp. 103470, 2020.
[86] R. Luciano, H. Darban, C. Bartolomeo, F. Fabbrocino, D. Scorza, Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model, Mechanics Research Communications, pp. 103536, 2020.
[87] Y. He, H. Qing, C.-F. Gao, Theoretical analysis of free vibration of microbeams under different boundary conditions using stress-driven nonlocal integral model, International Journal of Structural Stability and Dynamics, Vol. 20, No. 03, pp. 2050040, 2020.
[88] P. Jiang, H. Qing, C. Gao, Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model, Applied Mathematics and Mechanics, Vol. 41, No. 2, pp. 207-232, 2020.
[89] P. Zhang, H. Qing, Buckling analysis of curved sandwich microbeams made of functionally graded materials via the stress-driven nonlocal integral model, Mechanics of Advanced Materials and Structures, pp. 1-18, 2020.
[90] P. Zhang, H. Qing, Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams, Composite Structures, Vol. 265, pp. 113770, 2021.
[91] P. Zhang, H. Qing, C.-F. Gao, Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model, Composite Structures, pp. 112362, 2020.
[92] R. Penna, L. Feo, A. Fortunato, R. Luciano, Nonlinear free vibrations analysis of geometrically imperfect FG nano-beams based on stress-driven nonlocal elasticity with initial pretension force, Composite Structures, Vol. 255, pp. 112856, 2021.
[93] R. Barretta, M. Čanađija, F. Marotti de Sciarra, A. Skoblar, R. Žigulić, Dynamic behavior of nanobeams under axial loads: Integral elasticity modeling and size‐dependent eigenfrequencies assessment, Mathematical Methods in the Applied Sciences, 2021.
[94] M. S. Vaccaro, F. P. Pinnola, F. M. de Sciarra, M. Canadija, R. Barretta, Stress-driven two-phase integral elasticity for Timoshenko curved beams, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, pp. 2397791421990514, 2021.
[95] R. Barretta, S. A. Faghidian, F. M. de Sciarra, Stress-driven nonlocal integral elasticity for axisymmetric nano-plates, International Journal of Engineering Science, Vol. 136, pp. 38-52, 2019.
[96] A. Farajpour, C. Q. Howard, W. S. Robertson, On size-dependent mechanics of nanoplates, International Journal of Engineering Science, Vol. 156, pp. 103368, 2020.
[97] M. Shariati, B. Azizi, M. Hosseini, M. Shishesaz, On the calibration of size parameters related to non-classical continuum theories using molecular dynamics simulations, International Journal of Engineering Science, Vol. 168, pp. 103544, 2021.
[98] M. Shishesaz, M. Shariati, M. Hosseini, Size effect analysis on Vibrational response of Functionally Graded annular nano plate based on Nonlocal stress-driven method, International Journal of Structural Stability and Dynamics, 2021, In press.
[99] M. Shariati, M. Shishesaz, R. Mosalmani, S. A. S. Roknizadeh, Size Effect on the Axisymmetric Vibrational Response of Functionally Graded Circular Nano-Plate Based on the Nonlocal Stress-Driven Method, Journal of Applied and Computational Mechanics, pp. -, 2021.
[100] A. F. Russillo, G. Failla, G. Alotta, F. M. de Sciarra, R. Barretta, On the dynamics of nano-frames, International Journal of Engineering Science, Vol. 160, pp. 103433, 2021.
[101] H. M. Sedighi, M. Malikan, Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment, Physica Scripta, Vol. 95, No. 5, pp. 055218, 2020.
[102] H. M. Sedighi, H. M. Ouakad, R. Dimitri, F. Tornabene, Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment, Physica Scripta, Vol. 95, No. 6, pp. 065204, 2020.
[103] H. M. Ouakad, A. Valipour, K. K. Żur, H. M. Sedighi, J. Reddy, On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity, Mechanics of Materials, Vol. 148, pp. 103532, 2020.
[104] X. Yang, S. Sahmani, B. Safaei, Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects, Engineering with Computers, pp. 1-16, 2020.