[1] A. Omuro, L. M. DeAngelis, Glioblastoma and other malignant gliomas: a clinical review, Jama, Vol. 310, No. 17, pp. 1842-1850, 2013.
[2] M. Kamali, R. Dinarvand, H. Maleki, H. Arzani, P. Mahdaviani, H. Nekounam, M. Adabi, M. Khosravani, Preparation of imatinib base loaded human serum albumin for application in the treatment of glioblastoma, RSC Advances, Vol. 5, No. 76, pp. 62214-62219, 2015.
[3] C.-Y. Ting, C.-H. Fan, H.-L. Liu, C.-Y. Huang, H.-Y. Hsieh, T.-C. Yen, K.-C. Wei, C.-K. Yeh, Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment, Biomaterials, Vol. 33, No. 2, pp. 704-712, 2012.
[4] S. H. Alavizadeh, J. Akhtari, A. Badiee, S. Golmohammadzadeh, M. R. Jaafari, Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models, Expert opinion on drug delivery, Vol. 13, No. 3, pp. 325-336, 2016.
[5] T. Mainprize, N. Lipsman, Y. Huang, Y. Meng, A. Bethune, S. Ironside, C. Heyn, R. Alkins, M. Trudeau, A. Sahgal, Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study, Scientific reports, Vol. 9, No. 1, pp. 1-7, 2019.
[6] A. Parodi, J. Miao, S. M. Soond, M. Rudzinska, A. A. Zamyatnin, Jr., Albumin Nanovectors in Cancer Therapy and Imaging, Biomolecules, Vol. 9, No. 6, pp. 218, Jun 5, 2019.
[7] A. Cseke, T. Schwarz, S. Jain, S. Decker, K. Vogl, E. Urban, G. F. Ecker, Propafenone analogue with additional H‐bond acceptor group shows increased inhibitory activity on P‐glycoprotein, Archiv der Pharmazie, pp. e1900269, 2020.
[8] L. Jena, E. McErlean, H. McCarthy, Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme, Drug delivery and translational research, pp. 1-15, 2019.
[9] H. Nekounam, Z. Allahyari, S. Gholizadeh, E. Mirzaei, M. A. Shokrgozar, R. J. M. S. Faridi-Majidi, E. C, Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications, Vol. 117, pp. 111226, 2020.
[10] H. Nekounam, H. Samadian, F. J. b. Asghari, Electro-conductive carbon nanofibers containing ferrous sulfate for bone tissue engineering, 2020.
[11] H. Nekounam, S. Gholizadeh, Z. Allahyari, H. Samadian, N. Nazeri, M. A. Shokrgozar, R. J. M. R. B. Faridi-Majidi, Electroconductive Scaffolds for Tissue Regeneration: Current opportunities, pitfalls, and potential solutions, pp. 111083, 2020.
[12] H. Arzani, M. Adabi, J. Mosafer, F. Dorkoosh, M. Khosravani, H. Maleki, H. Nekounam, M. J. B. R. i. A. C. Kamali, Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells, Vol. 9, No. 5, pp. 4225-4231, 2019.
[13] Y. Zhang, T. Sun, C. Jiang, Biomacromolecules as carriers in drug delivery and tissue engineering, Acta Pharmaceutica Sinica B, Vol. 8, No. 1, pp. 34-50, 2018.
[14] S. C. Sozer, T. O. Egesoy, M. Basol, G. Cakan-Akdogan, Y. J. J. o. D. D. S. Akdogan, Technology, A simple desolvation method for production of cationic albumin nanoparticles with improved drug loading and cell uptake, Vol. 60, pp. 101931, 2020.
[15] S. Abbasi, A. Paul, W. Shao, S. J. J. o. d. d. Prakash, Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment, Vol. 2012, 2012.
[16] B. Kim, C. Lee, E. S. Lee, B. S. Shin, Y. S. Youn, Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer, asian journal of pharmaceutical sciences, Vol. 11, No. 6, pp. 708-714, 2016.
[17] V. J. Muniswamy, N. Raval, P. Gondaliya, V. Tambe, K. Kalia, R. K. Tekade, ‘Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin, International journal of pharmaceutics, Vol. 555, pp. 77-99, 2019.
[18] S. A. Y. Rehana H, Iqbal QA, Kalsoom R, khalid Iqbal R, Anwar F, A Review: Targeted Cancer Therapy as a Fight Against Brain Tumor, American Journal of Biomedical Science and Research, Vol. 3, pp. 5, 2019.
[19] Y. Liu, W. Lu, Recent advances in brain tumor-targeted nano-drug delivery systems, Expert opinion on drug delivery, Vol. 9, No. 6, pp. 671-686, 2012.
[20] E. N. Hoogenboezem, C. L. Duvall, Harnessing albumin as a carrier for cancer therapies, Advanced drug delivery reviews, Vol. 130, pp. 73-89, 2018.
[21] L. Van de Sande, S. Cosyns, W. Willaert, W. Ceelen, Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review, Drug Delivery, Vol. 27, No. 1, pp. 40-53, 2020.
[22] W. M. Pardridge, New approaches to drug delivery through the blood-brain barrier, Trends in biotechnology, Vol. 12, No. 6, pp. 239-245, 1994.
[23] V. J. Muniswamy, N. Raval, P. Gondaliya, V. Tambe, K. Kalia, R. K. J. I. j. o. p. Tekade, ‘Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin, Vol. 555, pp. 77-99, 2019.
[24] M. K. Riley, W. Vermerris, Recent advances in nanomaterials for gene delivery—a review, Nanomaterials, Vol. 7, No. 5, pp. 94, 2017.
[25] A. Parodi, M. Rudzińska, A. A. Deviatkin, S. M. Soond, A. V. Baldin, A. A. Zamyatnin, Established and emerging strategies for drug delivery across the blood-brain barrier in brain cancer, Pharmaceutics, Vol. 11, No. 5, pp. 245, 2019.
[26] W. Lohcharoenkal, L. Wang, Y. C. Chen, Y. Rojanasakul, Protein nanoparticles as drug delivery carriers for cancer therapy, BioMed research international, Vol. 2014, 2014.
[27] A. M. Diels, C. W. J. C. r. i. m. Michiels, High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms, Vol. 32, No. 4, pp. 201-216, 2006.
[28] S. Schultz, G. Wagner, K. Urban, J. J. C. E. Ulrich, T. I. C. P. E. P. Engineering‐Biotechnology, High‐pressure homogenization as a process for emulsion formation, Vol. 27, No. 4, pp. 361-368, 2004.
[29] S. M. Jafari, E. Assadpoor, Y. He, B. J. F. h. Bhandari, Re-coalescence of emulsion droplets during high-energy emulsification, Vol. 22, No. 7, pp. 1191-1202, 2008.
[30] K. S. Yadav, K. J. J. o. P. I. Kale, High pressure homogenizer in pharmaceuticals: understanding its critical processing parameters and applications, pp. 1-12, 2019.
[31] H. L. Tan, L. V. J. J. o. M. L. Woodcock, Molecular dynamics study of a simple liquid at negative pressures, Vol. 136, No. 3, pp. 281-287, 2007.
[32] J. Jeevanandam, Y. San Chan, M. K. J. B. Danquah, Nano-formulations of drugs: recent developments, impact and challenges, Vol. 128, pp. 99-112, 2016.
[33] M. G. Dilshara, I. M. N. Molagoda, R. G. P. T. Jayasooriya, Y. H. Choi, C. Park, K. T. Lee, S. Lee, G.-Y. Kim, p53-Mediated Oxidative Stress Enhances Indirubin-3′-Monoxime-Induced Apoptosis in HCT116 Colon Cancer Cells by Upregulating Death Receptor 5 and TNF-Related Apoptosis-Inducing Ligand Expression, Antioxidants, Vol. 8, No. 10, pp. 423, 2019.
[34] K. Misumi, T. Ogo, J. Ueda, A. Tsuji, S. Fukui, N. Konagai, R. Asano, S. Yasuda, Development of pulmonary arterial hypertension in a patient treated with Qing-Dai (Chinese herbal medicine), Internal Medicine, Vol. 58, No. 3, pp. 395-399, 2019.
[35] L. Chen, J. Wang, J. Wu, Q. Zheng, J. Hu, Indirubin suppresses ovarian cancer cell viabilities through the STAT3 signaling pathway, Drug design, development and therapy, Vol. 12, pp. 3335, 2018.
[36] A. Rahiminejad, R. Dinarvand, B. Johari, S. J. Nodooshan, A. Rashti, E. Rismani, P. Mahdaviani, Z. Saltanatpour, S. Rahiminejad, M. Raigani, Preparation and investigation of indirubin‐loaded SLN nanoparticles and their anti‐cancer effects on human glioblastoma U87MG cells, Cell biology international, Vol. 43, No. 1, pp. 2-11, 2019.
[37] M. Thöle, S. Nobmann, J. Huwyler, A. Bartmann, G. Fricker, Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries, Journal of drug targeting, Vol. 10, No. 4, pp. 337-344, 2002.
[38] H. Lu, L. Noorani, Y. Jiang, A. W. Du, M. H. Stenzel, Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids, Journal of Materials Chemistry B, Vol. 5, No. 48, pp. 9591-9599, 2017.
[39] N. P. Desai, C. Tao, A. Yang, L. Louie, T. Zheng, Z. Yao, P. Soon-Shiong, S. Magdassi, Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof, Google Patents, 1999.
[40] B. Chertok, B. A. Moffat, A. E. David, F. Yu, C. Bergemann, B. D. Ross, V. C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials, Vol. 29, No. 4, pp. 487-496, 2008.
[41] H. J. Byeon, S. Lee, S. Y. Min, E. S. Lee, B. S. Shin, H.-G. Choi, Y. S. Youn, Doxorubicin-loaded nanoparticles consisted of cationic-and mannose-modified-albumins for dual-targeting in brain tumors, Journal of Controlled Release, Vol. 225, pp. 301-313, 2016.
[42] W. Lu, Y. Zhang, Y.-Z. Tan, K.-L. Hu, X.-G. Jiang, S.-K. Fu, Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery, Journal of controlled release, Vol. 107, No. 3, pp. 428-448, 2005.
[43] S. Das, R. Banerjee, J. Bellare, Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery, Trends Biomater Artif Organs, Vol. 18, No. 2, pp. 203-12, 2005.
[44] M. Hua, X. Hua, Polymer nanoparticles prepared by supercritical carbon dioxide for in vivo anti-cancer drug delivery, Nano-Micro Letters, Vol. 6, No. 1, pp. 20-23, 2014.