Preparation of cationized albumin nanoparticles loaded indirubin by high pressure hemogenizer.

Document Type : Research Paper


1 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

3 Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, Iran

4 International affairs, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

5 Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran

6 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran

7 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

8 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran


Indirubin can be applied as an anti-cancer drug for inhibition of brain tumors. However, its performance is reduced due to hydrophobicity. In this study, we synthesized cationic human serum albumin (CHSA) nanoparticle by a new hybrid approach (with chemical and mechanical base) for improvement the surface chemistry of albumin and the amount of indirubin loaded CHSA nanoparticle. In this study, the generated mechanical force from a high-pressure homogenizer (HPH) was used to make nanoparticles with a certain size with narrow polydispersity. The results indicated that the size of indirubin loaded CHSA nanoparticles were 130 nm and their zeta potential were +9. Besides, the encapsulation efficiency and drug loading capacity were found to be 85% and 5.8 %, respectively. To the best to our knowledge, this is the first time that indirubin has been used in albumin nanoparticles. In this study, indirubin loaded CHSA nanoparticles was shown can be a potential candidate for drug delivery in the treatment of glioblastoma. Moreover, the cationized form allows the chemical agent to be transmitted to the brain.


[1]           A. Omuro, L. M. DeAngelis, Glioblastoma and other malignant gliomas: a clinical review, Jama, Vol. 310, No. 17, pp. 1842-1850, 2013.
[2]           M. Kamali, R. Dinarvand, H. Maleki, H. Arzani, P. Mahdaviani, H. Nekounam, M. Adabi, M. Khosravani, Preparation of imatinib base loaded human serum albumin for application in the treatment of glioblastoma, RSC Advances, Vol. 5, No. 76, pp. 62214-62219, 2015.
[3]           C.-Y. Ting, C.-H. Fan, H.-L. Liu, C.-Y. Huang, H.-Y. Hsieh, T.-C. Yen, K.-C. Wei, C.-K. Yeh, Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment, Biomaterials, Vol. 33, No. 2, pp. 704-712, 2012.
[4]           S. H. Alavizadeh, J. Akhtari, A. Badiee, S. Golmohammadzadeh, M. R. Jaafari, Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models, Expert opinion on drug delivery, Vol. 13, No. 3, pp. 325-336, 2016.
[5]           T. Mainprize, N. Lipsman, Y. Huang, Y. Meng, A. Bethune, S. Ironside, C. Heyn, R. Alkins, M. Trudeau, A. Sahgal, Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study, Scientific reports, Vol. 9, No. 1, pp. 1-7, 2019.
[6]           A. Parodi, J. Miao, S. M. Soond, M. Rudzinska, A. A. Zamyatnin, Jr., Albumin Nanovectors in Cancer Therapy and Imaging, Biomolecules, Vol. 9, No. 6, pp. 218, Jun 5, 2019.
[7]           A. Cseke, T. Schwarz, S. Jain, S. Decker, K. Vogl, E. Urban, G. F. Ecker, Propafenone analogue with additional H‐bond acceptor group shows increased inhibitory activity on P‐glycoprotein, Archiv der Pharmazie, pp. e1900269, 2020.
[8]           L. Jena, E. McErlean, H. McCarthy, Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme, Drug delivery and translational research, pp. 1-15, 2019.
[9]           H. Nekounam, Z. Allahyari, S. Gholizadeh, E. Mirzaei, M. A. Shokrgozar, R. J. M. S. Faridi-Majidi, E. C, Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications, Vol. 117, pp. 111226, 2020.
[10]         H. Nekounam, H. Samadian, F. J. b. Asghari, Electro-conductive carbon nanofibers containing ferrous sulfate for bone tissue engineering, 2020.
[11]         H. Nekounam, S. Gholizadeh, Z. Allahyari, H. Samadian, N. Nazeri, M. A. Shokrgozar, R. J. M. R. B. Faridi-Majidi, Electroconductive Scaffolds for Tissue Regeneration: Current opportunities, pitfalls, and potential solutions, pp. 111083, 2020.
[12]         H. Arzani, M. Adabi, J. Mosafer, F. Dorkoosh, M. Khosravani, H. Maleki, H. Nekounam, M. J. B. R. i. A. C. Kamali, Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells, Vol. 9, No. 5, pp. 4225-4231, 2019.
[13]         Y. Zhang, T. Sun, C. Jiang, Biomacromolecules as carriers in drug delivery and tissue engineering, Acta Pharmaceutica Sinica B, Vol. 8, No. 1, pp. 34-50, 2018.
[14]         S. C. Sozer, T. O. Egesoy, M. Basol, G. Cakan-Akdogan, Y. J. J. o. D. D. S. Akdogan, Technology, A simple desolvation method for production of cationic albumin nanoparticles with improved drug loading and cell uptake, Vol. 60, pp. 101931, 2020.
[15]         S. Abbasi, A. Paul, W. Shao, S. J. J. o. d. d. Prakash, Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment, Vol. 2012, 2012.
[16]         B. Kim, C. Lee, E. S. Lee, B. S. Shin, Y. S. Youn, Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer, asian journal of pharmaceutical sciences, Vol. 11, No. 6, pp. 708-714, 2016.
[17]         V. J. Muniswamy, N. Raval, P. Gondaliya, V. Tambe, K. Kalia, R. K. Tekade, ‘Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin, International journal of pharmaceutics, Vol. 555, pp. 77-99, 2019.
[18]         S. A. Y. Rehana H, Iqbal QA, Kalsoom R, khalid Iqbal R, Anwar F, A Review: Targeted Cancer Therapy as a Fight Against Brain Tumor, American Journal of Biomedical Science  and Research, Vol. 3, pp. 5, 2019.
[19]         Y. Liu, W. Lu, Recent advances in brain tumor-targeted nano-drug delivery systems, Expert opinion on drug delivery, Vol. 9, No. 6, pp. 671-686, 2012.
[20]         E. N. Hoogenboezem, C. L. Duvall, Harnessing albumin as a carrier for cancer therapies, Advanced drug delivery reviews, Vol. 130, pp. 73-89, 2018.
[21]         L. Van de Sande, S. Cosyns, W. Willaert, W. Ceelen, Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review, Drug Delivery, Vol. 27, No. 1, pp. 40-53, 2020.
[22]         W. M. Pardridge, New approaches to drug delivery through the blood-brain barrier, Trends in biotechnology, Vol. 12, No. 6, pp. 239-245, 1994.
[23]         V. J. Muniswamy, N. Raval, P. Gondaliya, V. Tambe, K. Kalia, R. K. J. I. j. o. p. Tekade, ‘Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin, Vol. 555, pp. 77-99, 2019.
[24]         M. K. Riley, W. Vermerris, Recent advances in nanomaterials for gene delivery—a review, Nanomaterials, Vol. 7, No. 5, pp. 94, 2017.
[25]         A. Parodi, M. Rudzińska, A. A. Deviatkin, S. M. Soond, A. V. Baldin, A. A. Zamyatnin, Established and emerging strategies for drug delivery across the blood-brain barrier in brain cancer, Pharmaceutics, Vol. 11, No. 5, pp. 245, 2019.
[26]         W. Lohcharoenkal, L. Wang, Y. C. Chen, Y. Rojanasakul, Protein nanoparticles as drug delivery carriers for cancer therapy, BioMed research international, Vol. 2014, 2014.
[27]         A. M. Diels, C. W. J. C. r. i. m. Michiels, High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms, Vol. 32, No. 4, pp. 201-216, 2006.
[28]         S. Schultz, G. Wagner, K. Urban, J. J. C. E. Ulrich, T. I. C. P. E. P. Engineering‐Biotechnology, High‐pressure homogenization as a process for emulsion formation, Vol. 27, No. 4, pp. 361-368, 2004.
[29]         S. M. Jafari, E. Assadpoor, Y. He, B. J. F. h. Bhandari, Re-coalescence of emulsion droplets during high-energy emulsification, Vol. 22, No. 7, pp. 1191-1202, 2008.
[30]         K. S. Yadav, K. J. J. o. P. I. Kale, High pressure homogenizer in pharmaceuticals: understanding its critical processing parameters and applications, pp. 1-12, 2019.
[31]         H. L. Tan, L. V. J. J. o. M. L. Woodcock, Molecular dynamics study of a simple liquid at negative pressures, Vol. 136, No. 3, pp. 281-287, 2007.
[32]         J. Jeevanandam, Y. San Chan, M. K. J. B. Danquah, Nano-formulations of drugs: recent developments, impact and challenges, Vol. 128, pp. 99-112, 2016.
[33]         M. G. Dilshara, I. M. N. Molagoda, R. G. P. T. Jayasooriya, Y. H. Choi, C. Park, K. T. Lee, S. Lee, G.-Y. Kim, p53-Mediated Oxidative Stress Enhances Indirubin-3′-Monoxime-Induced Apoptosis in HCT116 Colon Cancer Cells by Upregulating Death Receptor 5 and TNF-Related Apoptosis-Inducing Ligand Expression, Antioxidants, Vol. 8, No. 10, pp. 423, 2019.
[34]         K. Misumi, T. Ogo, J. Ueda, A. Tsuji, S. Fukui, N. Konagai, R. Asano, S. Yasuda, Development of pulmonary arterial hypertension in a patient treated with Qing-Dai (Chinese herbal medicine), Internal Medicine, Vol. 58, No. 3, pp. 395-399, 2019.
[35]         L. Chen, J. Wang, J. Wu, Q. Zheng, J. Hu, Indirubin suppresses ovarian cancer cell viabilities through the STAT3 signaling pathway, Drug design, development and therapy, Vol. 12, pp. 3335, 2018.
[36]         A. Rahiminejad, R. Dinarvand, B. Johari, S. J. Nodooshan, A. Rashti, E. Rismani, P. Mahdaviani, Z. Saltanatpour, S. Rahiminejad, M. Raigani, Preparation and investigation of indirubin‐loaded SLN nanoparticles and their anti‐cancer effects on human glioblastoma U87MG cells, Cell biology international, Vol. 43, No. 1, pp. 2-11, 2019.
[37]         M. Thöle, S. Nobmann, J. Huwyler, A. Bartmann, G. Fricker, Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries, Journal of drug targeting, Vol. 10, No. 4, pp. 337-344, 2002.
[38]         H. Lu, L. Noorani, Y. Jiang, A. W. Du, M. H. Stenzel, Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids, Journal of Materials Chemistry B, Vol. 5, No. 48, pp. 9591-9599, 2017.
[39]         N. P. Desai, C. Tao, A. Yang, L. Louie, T. Zheng, Z. Yao, P. Soon-Shiong, S. Magdassi, Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof, Google Patents, 1999.
[40]         B. Chertok, B. A. Moffat, A. E. David, F. Yu, C. Bergemann, B. D. Ross, V. C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials, Vol. 29, No. 4, pp. 487-496, 2008.
[41]         H. J. Byeon, S. Lee, S. Y. Min, E. S. Lee, B. S. Shin, H.-G. Choi, Y. S. Youn, Doxorubicin-loaded nanoparticles consisted of cationic-and mannose-modified-albumins for dual-targeting in brain tumors, Journal of Controlled Release, Vol. 225, pp. 301-313, 2016.
[42]         W. Lu, Y. Zhang, Y.-Z. Tan, K.-L. Hu, X.-G. Jiang, S.-K. Fu, Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery, Journal of controlled release, Vol. 107, No. 3, pp. 428-448, 2005.
[43]         S. Das, R. Banerjee, J. Bellare, Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery, Trends Biomater Artif Organs, Vol. 18, No. 2, pp. 203-12, 2005.
[44]         M. Hua, X. Hua, Polymer nanoparticles prepared by supercritical carbon dioxide for in vivo anti-cancer drug delivery, Nano-Micro Letters, Vol. 6, No. 1, pp. 20-23, 2014.
Volume 52, Issue 3
September 2021
Pages 498-506
  • Receive Date: 10 August 2021
  • Accept Date: 01 September 2021