Forced vibration of a magnetoelastic laminated composite beam on Pasternak’s foundation

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

3 Department of Mathematics, Faculty of Science, Bisha University, Bisha 61922, Saudi Arabia

Abstract

Vibrational behavior prediction of a laminated composite beam on Winkler-Pasternak’s medium is analyzed in the present article. The proposed beam contains four smart actuating layers of magnetostrictive material to vibration control of the system with a simple constant feedback control gain distribution. The designed structure undergoes an external force in x direction and a magnetic field. A higher-order shear deformation theory with an exponential shape function is used to model the proposed system. Hamilton’s principle and Navier’s approach are used to obtain and solve the dynamic system. The natural frequencies, deflections, and suppression time of the studied system are computed for different thickness ratios, ply orientations, number and location of the magnetostrictive layers, foundation stiffness, velocity feedback gain value, and external force.

Keywords

[1]       Tan X.B, Baras J.S., 2004, Modeling and control of hysteresis in magnetostrictive actuators, Automatica  40(9): 1469–1480.
[2]        Z. Deng, M.J Dapino, 2018, Review of magnetostrictive materials for structural vibration control, Smart  Materials and Structures 27: 113001.
[3]       Amabili M., Farhadi S., 2009, Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates, Journal of Sound and Vibration 320: 649–667.
[4]        Amabili M., 2008, Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, USA.
[5]        Nejad M.Z., Jabbari M., Hadi A., 2017, A review of functionally graded thick cylindrical and conical
             shells, Journal of Computational Applied Mechanics 48(2): 357–370.
[6]        Murty A.V.K., Anjanappa M., Wu Y.F., 1997, The use of magnetostrictive particle actuators for vibration
            attenuation of flexible beams, Journal of Sound and Vibration 206(2): 133–149.
[7]        Kumar J.S., Ganesan N., Swarnamani S., Padmanabhan C., 2003, Active control of beam with magnetostrictive layer, Computers & Structures 81(13): 1375–1382.
[8]        Kumar J.S., Ganesan N., Swarnamani S., Padmanabhan C., 2003, Active control of cylindrical shell with magnetostrictive layer, Journal of Sound and Vibration 262(3): 577–589.
[9]        Lee S.J., Reddy J.N., 2004, Rostam-Abadi F., Transient analysis of laminated composite plates with embedded smart-material layers, Finite Elements in Analysis and Design 40(5-6): 463–483.
[10]        Pradhan S.C., 2005, Vibration suppression of FGM shells using embedded magnetostrictive layers, International Journal of Solids and Structures 42(9-10): 2465–2488.
[11]        Zabihollah A., Zareie S., 2011, Optimal design of adaptive laminated beam using layerwise finite element,
             Journal of Sensors 2011: 240341.
[12]       Reddy J.N., 1999, On laminated composite plates with integrated sensors and actuators, Engineering Structures 21: 568–593.
[13]       Santapuri S., Scheidler J.J., Dapino M.J., 2015, Two-dimensional dynamic model for composite laminates with embedded magnetostrictive materials, Composite Structures 132: 737–745.
[14]       Krishnamurthy A.V., Anjanappa M., Wang Z., Chen X., 1999, Sensing of delaminations in composite laminates using embedded magnetostrictive particle layers, Journal of Intelligent Material Systems and Structures 10(10): 825–835.
[15]       Hong C.C., 2013, Application of a magnetostrictive actuator, Mater. Des., 46: 617–621.
[16]        Moon S.J., Lim C.W., Kim B.H., Park Y., 2007, Structural vibration control using linear magnetostrictive actuators, Journal of Sound and Vibration 302(4–5): 875–891.
[17]         Kishore M.D.V.H., Singh B.N., Pandit M.K., 2011, Nonlinear static analysis of smart laminated composite  plate, Aerospace Science and Technology 15: 224–235.
[18]       Zhou H-M., Zhou Y-H., 2007, Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials, Smart materials and structures 16(1): 198.
[19]       Oates W.S., Smith R.C., 2008, Nonlinear optimal control techniques for vibration attenuation using magnetostrictive actuators, Journal of Intelligent Material Systems and Structures 19(2): 193–209.
[20]        Xu X., Han Q., Chu F., 2017, Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic  field, International Journal of Non-Linear Mechanics 95: 59–72.
[21]       Zhang Y., Zhou H., Zhou Y., 2015, Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers, Acta Mechanica Solida Sinica 28: 50–61.
[22]       Zhou H.M., Zheng X.J., Zhou Y-H., 2006, Active vibration control of nonlinear giant magnetostrictive actuators, Smart Materials and Structures 15(3): 792.
[23]        Shindo Y., Narita F., Mori K., Nakamura T., 2009, Nonlinear bending response of giant magnetostrictive laminated actuators in magnetic fields, Journal of Mechanics of materials and structures 4(5): 941–949.
[24]       Saidha E., Naik G.N., Gopalkrishnan S., 2003, An experimental investigation of a smart laminated composite beam with a magnetostrictive patch for health monitoring applications, Structural Health  Monitoring 2(4): 273–292.
[25]   Zhang B., Jin K., Kou Y., Zheng X., The model of active vibration control based on giant magnetostrictive materials, Smart Materials and Structures 28(8): 085028, 2019.
[26]       Shahin M., Asghar J.A., 2019, Vibration suppression of truncated conical shells embedded with magnetostrictive layers based on first order shear deformation theory, Journal of Theoretical and Appl
ied Mechanics 57(4): 957–972.
[27]       Zenkour A.M., El-Shahrany H.D., 2019, Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers, Journal of Computational Applied Mechanics 50(1): 69–75.
[28]       Zenkour A.M., El-Shahrany H.D., 2020, Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation, Applied Mathematics and Mechanics 41: 1269–1286.
 [29]      Zenkour A.M., El-Shahrany H.D., 2021, Quasi-3D theory for the vibration and deflection of a magnetostrictive composite plate resting on a viscoelastic medium, Composite Structures 269: 114028.
 [30]  Reddy J.N., Barbosa J.I., On vibration suppression of magnetostrictive beams, Smart Materials and Structures 9: 49–58, 2000.
 [31]       Barati A., Adeli M.M., Hadi A., 2020, Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field, International Journal of Applied Mechanics, doi.org/10.1142/S1758825120500210.‏
 [32]      Barati A., Hadi A., Nejad M.Z., Noroozi R., 2020, On vibration of bi-directional functionally graded nanobeams under magnetic field, Mechanics Based Design of Structures and Machines 1–18.
 [33]      Mousavi M., Hosseini M., Hadi A., Shishehsaz M., 2020, Bending Analysis of Bi-Directional FGM Timoshenko Nano-Beam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation, International Journal of Applied Mechanics, doi. 10.1142/S1758825120500933.
Volume 52, Issue 3
September 2021
Pages 478-497
  • Receive Date: 02 July 2021
  • Revise Date: 04 September 2021
  • Accept Date: 06 September 2021