[1] S. O. Onuh, Y. Y. Yusuf, Rapid prototyping technology: applications and benefits for rapid product development, Journal of intelligent manufacturing, Vol. 10, No. 3, pp. 301-311, 1999.
[2] C. Lee, S. Kim, H. Kim, S.-H. Ahn, Measurement of anisotropic compressive strength of rapid prototyping parts, Journal of materials processing technology, Vol. 187, pp. 627-630, 2007.
[3] J.-P. Kruth, M.-C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, Cirp Annals, Vol. 47, No. 2, pp. 525-540, 1998.
[4] B. H. Lee, J. Abdullah, Z. A. Khan, Optimization of rapid prototyping parameters for production of flexible ABS object, Journal of materials processing technology, Vol. 169, No. 1, pp. 54-61, 2005.
[5] B. N. Turner, R. Strong, S. A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyping Journal, 2014.
[6] A. Sood, R. Ohdar, S. Mahapatra, Parametric appraisal of fused deposition modelling process using the grey Taguchi method, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 224, No. 1, pp. 135-145, 2010.
[7] L. Villalpando, H. Eiliat, R. J. Urbanic, An optimization approach for components built by fused deposition modeling with parametric internal structures, Procedia Cirp, Vol. 17, pp. 800-805, 2014.
[8] I. El‐Katatny, S. Masood, Y. Morsi, Error analysis of FDM fabricated medical replicas, Rapid Prototyping Journal, 2010.
[9] G. Percoco, L. Galantucci, F. Lavecchia, Validation study of an analytical model of FDM accuracy, DAAAM International Scientific Book, Published by DAAAM International Vienna, Austria, pp. 585-592, 2011.
[10] O. A. Mohamed, S. H. Masood, J. L. Bhowmik, Modeling, analysis, and optimization of dimensional accuracy of FDM-fabricated parts using definitive screening design and deep learning feedforward artificial neural network, Advances in Manufacturing, Vol. 9, No. 1, pp. 115-129, 2021.
[11] O. E. Akbaş, O. Hıra, S. Z. Hervan, S. Samankan, A. Altınkaynak, Dimensional accuracy of FDM-printed polymer parts, Rapid Prototyping Journal, 2019.
[12] J.-M. Park, J. Jeon, J.-Y. Koak, S.-K. Kim, S.-J. Heo, Dimensional accuracy and surface characteristics of 3D-printed dental casts, The Journal of prosthetic dentistry, 2020.
[13] A. Peng, X. Xiao, R. Yue, Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system, The International Journal of Advanced Manufacturing Technology, Vol. 73, No. 1-4, pp. 87-100, 2014.
[14] R. Mendricky, D. Fris, Analysis of the Accuracy and the Surface Roughness of FDM/FFF Technology and Optimisation of Process Parameters, Tehnički vjesnik, Vol. 27, No. 4, pp. 1166-1173, 2020.
[15] J. S. Chohan, R. Singh, K. S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, Vol. 117, pp. 138-149, 2017.
[16] A. Garg, A. Bhattacharya, A. Batish, On surface finish and dimensional accuracy of FDM parts after cold vapor treatment, Materials and Manufacturing Processes, Vol. 31, No. 4, pp. 522-529, 2016.
[17] J. Nsengimana, J. Van der Walt, E. Pei, M. Miah, Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts, Rapid Prototyping Journal, 2019.
[18] P. K. Garg, R. Singh, I. Ahuja, Multi-objective optimization of dimensional accuracy, surface roughness and hardness of hybrid investment cast components, Rapid Prototyping Journal, 2017.
[19] K. Tong, S. Joshi, E. A. Lehtihet, Error compensation for fused deposition modeling (FDM) machine by correcting slice files, Rapid Prototyping Journal, 2008.
[20] S. Li, T. Liu, X. Xiao, W. Hu, W. Liao, Study on Size Error Compensation of Connecting Bracket Based on Fused Deposition Modeling, in Proceeding of, IOP Publishing, pp. 012013.
[21] R. Păcurar, V. Buzilă, A. Păcurar, E. Guţiu, S. D. Stan, P. Berce, Research on improving the accuracy of FDM 3D printing process by using a new designed calibrating part, in Proceeding of, EDP Sciences, pp. 01007.
[22] U. Yaman, Shrinkage compensation of holes via shrinkage of interior structure in FDM process, The International Journal of Advanced Manufacturing Technology, Vol. 94, No. 5, pp. 2187-2197, 2018.
[23] U. M. Dilberoglu, S. Simsek, U. Yaman, Shrinkage compensation approach proposed for ABS material in FDM process, Materials and Manufacturing Processes, Vol. 34, No. 9, pp. 993-998, 2019.
[24] A. Noriega, D. Blanco, B. Alvarez, A. Garcia, Dimensional accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm, The International Journal of Advanced Manufacturing Technology, Vol. 69, No. 9-12, pp. 2301-2313, 2013.
[25] D. A. Bircan, Development of a NURBS based adaptive slicing procedure for fused deposition modeling in rapid prototyping applications, Thesis, PhD thesis, Cukurova University, 2008.
[26] F. Górski, W. Kuczko, R. Wichniarek, Influence of process parameters on dimensional accuracy of parts manufactured using Fused Deposition Modelling technology, Advances in Science and Technology Research Journal, Vol. 7, No. 19, pp. 27--35, 2013.
[27] F. Rayegani, G. C. Onwubolu, Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE), The International Journal of Advanced Manufacturing Technology, Vol. 73, No. 1-4, pp. 509-519, 2014.
[28] A. K. Sood, R. Ohdar, S. S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method, Materials & Design, Vol. 30, No. 10, pp. 4243-4252, 2009.
[29] S. K. Panda, S. Padhee, S. Anoop Kumar, S. S. Mahapatra, Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique, Intelligent information management, Vol. 1, No. 02, pp. 89, 2009.
[30] A. Arivazhagan, S. Masood, Dynamic mechanical properties of ABS material processed by fused deposition modelling, Int. J. Eng. Res. Appl, Vol. 2, No. 3, pp. 2009-2014, 2012.
[31] O. Luzanin, D. Movrin, M. Plancak, EXPERIMENTAL INVESTIGATION OF EXTRUSION SPEED AND TEMPERATURE EFFECTS ON ARITHMETIC MEAN, Journal for Technology of Plasticity, Vol. 38, No. 2, 2013.
[32] R. K. Sahu, S. Mahapatra, A. K. Sood, A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic, Journal for Manufacturing Science and Production, Vol. 13, No. 3, pp. 183, 2013.
[33] S. Bhatia, Effect of machine positional errors on geometric tolerances in additive manufacturing, Thesis, University of Cincinnati, 2014.
[34] S. O. Akande, Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis, International Journal of Engineering Research and Technology, Vol. 4, No. 4, pp. 196-202, 2015.
[35] L. Baich, G. Manogharan, H. Marie, Study of infill print design on production cost-time of 3D printed ABS parts, International Journal of Rapid Manufacturing, Vol. 5, No. 3-4, pp. 308-319, 2015.
[36] A. Equbal, A. K. Sood, A. Ansari, A. Equbal, Optimization of process parameters of FDM part for minimiizing its dimensional inaccuracy, International Journal of Mechanical and Production Engineering Research and Development, Vol. 7, No. 2, pp. 57-65, 2017.
[37] R. Narang, D. Chhabra, Analysis of process parameters of fused deposition modeling (FDM) technique, International Journal on Future Revolution in Computer Science & Communication Engineering, Vol. 3, No. 10, pp. 41-48, 2017.
[38] A. Qattawi, B. Alrawi, A. Guzman, Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach, Procedia Manufacturing, Vol. 10, pp. 791-803, 2017.
[39] Y. Y. Aw, C. K. Yeoh, M. A. Idris, P. L. Teh, K. A. Hamzah, S. A. Sazali, Effect of printing parameters on tensile, dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites, Materials, Vol. 11, No. 4, pp. 466, 2018.
[40] X. Deng, Z. Zeng, B. Peng, S. Yan, W. Ke, Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling, Materials, Vol. 11, No. 2, pp. 216, 2018.
[41] M. Leite, J. Fernandes, A. M. Deus, L. Reis, M. F. Vaz, Study of the influence of 3D printing parameters on the mechanical properties of PLA, in Proceeding of.
[42] A. Dey, N. Yodo, A systematic survey of FDM process parameter optimization and their influence on part characteristics, Journal of Manufacturing and Materials Processing, Vol. 3, No. 3, pp. 64, 2019.
[43] J. Lyu, S. Manoochehri, Error modeling and compensation for FDM machines, Rapid Prototyping Journal, 2019.
[44] L. Natrayan, M. S. Kumar, An integrated artificial neural network and Taguchi approach to optimize the squeeze cast process parameters of AA6061/Al2O3/SiC/Gr hybrid composites prepared by novel encapsulation feeding technique, Materials Today Communications, Vol. 25, pp. 101586, 2020.
[45] F. Halladj, A. Boukhiar, H. Amellal, S. Benamara, Optimization of traditional date vinegar preparation using full factorial design, Journal of the American Society of Brewing Chemists, Vol. 74, No. 2, pp. 137-144, 2016.
[46] S. Ree, Y. H. Park, H. Yoo, A study on education quality using the Taguchi method, Total Quality Management & Business Excellence, Vol. 25, No. 7-8, pp. 935-943, 2014.
[47] H. Rangaswamy, I. Sogalad, S. Basavarajappa, S. Acharya, G. Manjunath Patel, Experimental analysis and prediction of strength of adhesive-bonded single-lap composite joints: Taguchi and artificial neural network approaches, SN Applied Sciences, Vol. 2, pp. 1-15, 2020.
[48] C. Camposeco-Negrete, Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach, Progress in Additive Manufacturing, Vol. 5, No. 1, pp. 59-65, 2020.
[49] K. Elbaz, S.-L. Shen, A. Zhou, Z.-Y. Yin, H.-M. Lyu, Prediction of Disc Cutter Life during Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network, Engineering, 2020.
[50] L. Anastasakis, N. Mort, The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH), RESEARCH REPORT-UNIVERSITY OF SHEFFIELD DEPARTMENT OF AUTOMATIC CONTROL AND SYSTEMS ENGINEERING, 2001.
[51] M. H. Ahmadi, M. Sadeghzadeh, A. H. Raffiee, K.-w. Chau, Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes, Engineering Applications of Computational Fluid Mechanics, Vol. 13, No. 1, pp. 327-336, 2019.
[52] M. Bildirici, Ö. Ersin, Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns, The Scientific World Journal, Vol. 2014, 2014.
[53] H. Elçiçek, E. Akdoğan, S. Karagöz, The use of artificial neural network for prediction of dissolution kinetics, The Scientific World Journal, Vol. 2014, 2014.
[54] A. Gonzalez-Sanchez, J. Frausto-Solis, W. Ojeda-Bustamante, Attribute selection impact on linear and nonlinear regression models for crop yield prediction, The Scientific World Journal, Vol. 2014, 2014.
[55] D. J. Armaghani, M. Hasanipanah, H. B. Amnieh, D. T. Bui, P. Mehrabi, M. Khorami, Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm, Engineering with Computers, pp. 1-13, 2019.
[56] D. Li, D. J. Armaghani, J. Zhou, S. H. Lai, M. Hasanipanah, A GMDH predictive model to predict rock material strength using three non-destructive tests, Journal of Nondestructive Evaluation, Vol. 39, No. 4, pp. 1-14, 2020.
[57] M. Dorn, A. L. Braga, C. H. Llanos, L. S. Coelho, A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides, Expert Systems with Applications, Vol. 39, No. 15, pp. 12268-12279, 2012.