[1] Husain, A., Hone, J., Postma, H. W. C., Huang, X. M. H., Drake, T., Barbic, M., ... & Roukes, M. L. (2003). Nanowire-based very-high-frequency electromechanical resonator. Applied Physics Letters, 83(6), 1240-1242.
[2] Li, M., Mayer, T. S., Sioss, J. A., Keating, C. D., & Bhiladvala, R. B. (2007). Template-grown metal nanowires as resonators: performance and characterization of dissipative and elastic properties. Nano letters, 7(11), 3281-3284.
[3] Liao, M., Hishita, S., Watanabe, E., Koizumi, S., & Koide, Y. (2010). Suspended Single‐Crystal Diamond Nanowires for High‐Performance Nanoelectromechanical Switches. Advanced Materials, 22(47), 5393-5397.
[4] Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246.
[5] P. Xie, Q. Xiong, Y. Fang, Q. Qing and C. M. Lieber, Nat. Nanotechnol., 2011, 7, 119-125.
[6] Eom, K., Park, H. S., Yoon, D. S., & Kwon, T. (2011). Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Physics Reports, 503(4-5), 115-163.
[7] Kim, S. Y., & Park, H. S. (2008). Utilizing mechanical strain to mitigate the intrinsic loss mechanisms in oscillating metal nanowires. Physical review letters, 101(21), 215502.
[8] Pourkermani, A. G., Azizi, B., & Pishkenari, H. N. (2020). Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model. International Journal of Mechanical Sciences, 165, 105208.
[9] Kowalczyk-Gajewska, K., & Maździarz, M. (2018). Atomistic and mean-field estimates of effective stiffness tensor of nanocrystalline copper. International Journal of Engineering Science, 129, 47-62.
[10] Yang, X., Sun, Y., Wang, F., & Zhao, J. (2015). Surface effects on the initial dislocation of Ag nanowires. Computational Materials Science, 106, 23-28.
[11] Ahadi, A., & Melin, S. (2016). Size dependence of the Poisson’s ratio in single-crystal fcc copper nanobeams. Computational Materials Science, 111, 322-327.
[12] Pishkenari, H. N., Afsharmanesh, B., & Akbari, E. (2015). Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators. Current Applied Physics, 15(11), 1389-1396.
[13] Reddy, J., Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 2007. 45(2-8): p. 288-307.
[14] Wang, C. M., Zhang, Y. Y., & He, X. Q. (2007). Vibration of nonlocal Timoshenko beams. Nanotechnology, 18(10), 105401.
[15] Behera, L. and S. Chakraverty, Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials. Applied Nanoscience, 2014. 4(3): p.347-358.
[16] Wu, L.-Y., et al., Vibrations of nonlocal Timoshenko beams using orthogonal collocation method. Procedia Engineering, 2011. 14: p. 2394-2402.
[17] Eltaher, M., A. E. Alshorbagy, and F. Mahmoud, Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 2013. 37(7): p.4787-4797.
[18] Beni, Y. T., A. Jafaria, and H. Razavi, Size effect on free transverse vibration of cracked nano-beams using couple stress theory. International Journal of EngineeringTransactions B: Applications, 2014. 28(2): p. 296-304.
[19] Hasheminejad, S. M., et al., Free transverse vibrations of cracked nanobeams with surface effects. Thin Solid Films, 2011. 519(8): p. 2477-2482.
[20] Loghmani, M. and M. R. Hairi Yazdi, An analytical method for free vibration of multi cracked and stepped nonlocal nanobeams based on wave approach. Results in Physics, 2018. 11: p. 166-181.
[21] Roostai, H. and M. Haghpanahi, Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Applied Mathematical Modelling, 2014. 38(3): p. 1159-1169.
[22] Chondros, T. G., Dimarogonas, A. D., & Yao, J. (1998). A continuous cracked beam vibration theory. Journal of sound and vibration, 215(1), 17-34.
[23] Barad, K. H., Sharma, D. S., & Vyas, V. (2013). Crack detection in cantilever beam by frequency based method. procedia engineering, 51, 770-775.
[24] Mousavi Nejad Souq, S. S., & Baradaran, G. H. (2015). Crack detection in frame Structures with regard to changes in natural frequencies by using finite element method and ACOR. Modares Mechanical Engineering, 15(8), 51-58.(in Persian)
[25] Khalkar, V., & Ramachandran, S. (2017). Vibration analysis of a cantilever beam for oblique cracks. ARPN J. Eng. Appl. Sci., 12(4), 1144-1151.
[26] Swamidas, A. S. J., Yang, X., & Seshadri, R. (2004). Identification of cracking in beam structures using Timoshenko and Euler formulations. Journal of Engineering Mechanics, 130(11), 1297-1308.
[27] Khaji, N., Shafiei, M., & Jalalpour, M. (2009). Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions. International Journal of Mechanical Sciences, 51(9-10), 667-681.
[28] Batihan, A. Ç., & Kadioğlu, F. S. (2016). Vibration analysis of a cracked beam on an elastic foundation. International Journal of Structural Stability and Dynamics, 16(05), 1550006.
[29] Viola, E., Nobile, L., & Federici, L. (2002). Formulation of cracked beam element for structural analysis. Journal of engineering mechanics, 128(2), 220-230.
[30] Yokoyama, T., & Chen, M. C. (1998). Vibration analysis of edge-cracked beams using a line-spring model. Engineering Fracture Mechanics, 59(3), 403-409.
[31] Mendelev, M. I., Han, S., Srolovitz, D. J., Ackland, G. J., Sun, D. Y., & Asta, M. (2003). Development of new interatomic potentials appropriate for crystalline and liquid iron. Philosophical magazine, 83(35), 3977-3994.
[32] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19.
[33] Loya, J. A., Rubio, L., & Fernández-Sáez, J. (2006). Natural frequencies for bending vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 290(3-5), 640-653.
[34] Biswal, A. R., Roy, T., Behera, R. K., Pradhan, S. K., & Parida, P. K. (2016). Finite element based vibration analysis of a nonprismatic Timoshenko beam with transverse open crack. Procedia Engineering, 144, 226-233.
[35] Nguyen, K. V. (2014). Mode shapes analysis of a cracked beam and its application for crack detection. Journal of Sound and Vibration, 333(3), 848-872.
[36] Orhan, S. (2007). Analysis of free and forced vibration of a cracked cantilever beam. Ndt & E International, 40(6), 443-450.
[37] Zeng, J., Ma, H., Zhang, W., & Wen, B. (2017). Dynamic characteristic analysis of cracked cantilever beams under different crack types. Engineering Failure Analysis, 74, 80-94.
[38] Zheng, D. Y., & Kessissoglou, N. J. (2004). Free vibration analysis of a cracked beam by finite element method. Journal of Sound and vibration, 273(3), 457-475.
[39] Ebrahimi, A., Meghdari, A., Behzad, M. (2005). A New Approach for Vibration Analysis of a Cracked Beam. International Journal of Engineering, 18(4), 319-330.
[40] Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
[41] Shi, D., Wang, Q., Shi, X., & Pang, F. (2015). An accurate solution method for the vibration analysis of Timoshenko beams with general elastic supports. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(13), 2327-2340.
[42] Tada, H., Paris, P. C., & Irwin, G. R. (1973). The stress analysis of cracks. Handbook, Del Research Corporation, 34.
[43] Lellep, J. A. A. N., & Lenbaum, A. R. T. U. R. (2016). Natural vibrations of a nano-beam with cracks. International Journal of Theoretical and Applied Mechanics, 1(1), 247-252.
[44] COMSOL, A. (2018). Comsol multiphysics® v. 5.4 www. comsol. com. Stockholm, Sweden. COMSOL AB.