Numerical Investigations of Two-Phase Flow on a Stepped Spillway under Various Conditions

Document Type : Research Paper

Authors

1 Department of Civil Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

2 Department of Mechanical Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

Abstract

In this study, two-phase flow over a three-dimensional stepped spillway was numerically investigated using a finite volume code in ansys-Fluent commercial software. The numerical results were validated against experimental data. Then, the effects of several parameters were evaluated on the structure of the flow over the concerned spillway. Based on the natural roughness, several roughness heights of 0.0001, 0.0005, and 0.001 m were considered on the spillway surface to investigate the flow structure. In the next step, several surfaces with different contact angles, including 80, 120, and 160°, were used. Finally, a passive control method, including simultaneous blowing and suction with different configurations, was applied to the steps of the spillway. The results revealed that a change in the surface roughness or contact angle and applying the control method could change the flow regime from skipping to nappe. Also, variations in the speed of falling water and energy loss were attributed to changes in the surface roughness and contact angle and implementation of the proposed control method.

Keywords

[1] Liao L., An R., Li J., Yi W., Liu X., Meng W., Zhu L., Hydraulic characteristics of stepped spillway dropshafts for urban deep tunnel drainage systems: the case study of Chengdu city, Water Science and Technology 80 (8): 1538-1548. doi:10.2166/wst.2019.405, 2019.
[2] Fadaei Kermani E., Barani GA., Ghaeini-Hessaroeyeh M., Prediction of cavitation damage on spillway using K-nearest neighbor modeling, Water Science and Technology 71 (3):347-352, doi: 10.2166/wst.2014.495, 2014
[3] Sorensen Robert M., Stepped Spillway Hydraulic Model Investigation, Journal of Hydraulic Engineering 111 (12): 1461-1472, doi:10.1061/(ASCE)0733-9429(1985)111:12(1461), 1985.
[4] Chamani MR., Rajaratnam N., Characteristics of Skimming Flow over Stepped Spillways. Journal of Hydraulic Engineering 125 (4): 361-368, doi:10.1061/(ASCE)0733-9429, 1999,125:4(361), 1999.
[5] Matos J., Sanchez M., Quintela A., Dolz J. , Characteristic depth and pressure profiles in skimming flow over stepped spillways, Proceedings of the 29th IAHR congress, Graz, Austria, 1999.
[6] Dong Z-y., Lee JH-w., Numerical simulation of skimming flow over mild stepped channel*, Journal of Hydrodynamics,Ser B 18 (3): 367-371, doi:https://doi.org/10.1016/S1001-6058(06)60018-8, 2006.
[7] Cheng X., Chen Y., Luo L., Numerical simulation of air-water two-phase flow over stepped spillways, Science in China Series E: Technological Sciences 49 (6): 674-684, doi:10.1007/s10288-006-2029-2, 2006.
[8] Wu J-h., Zhang B., Ma F., Inception point of air entrainment over stepped spillways, Journal of Hydrodynamics 25 (1):91-96, doi:10.1016/S1001-6058(13)60342-X, 2013.
[9] Felder S., Chanson H., Air entrainment and energy dissipation on porous pooled stepped spillways, IWLHS, International Workshop on Hydraulic Design of Low-Head Structures, Aachen - Bung & Pagliara, pp 87-97, 2013.
[10] Alghazali M., Jasim SM., Location of air inception point for different configurations of stepped spillways, International Journal of Civil Engineering and Technology 5 (4): 82–90, 2014.
[11] Munta S., Otun J., Study of the Inception Length of Flow over Stepped Spillway Models, Nigerian Journal of Technology 33 (2): 176-183, 2014.
[12] Daneshfaraz R., Joudi AR., Ghahramanzadeh A., Ghaderi A., Investigation of flow pressure distribution over a stepped spillway, Advances and Applications in Fluid Mechanics 19 (4): 811-828, doi:10.17654/FM019040811, 2016.
[13] Mohammad Rezapour Tabari M., Tavakoli S., Effects of Stepped Spillway Geometry on Flow Pattern and Energy Dissipation, Arabian Journal for Science and Engineering 41 (4): 1215-1224,. doi:10.1007/s13369-015-1874-8, 2016.
[14] Bai Z., Zhang J., Comparison of Different Turbulence Models for Numerical Simulation of Pressure Distribution in V-Shaped Stepped Spillway, Mathematical Problems in Engineering 2017:3537026, doi:10.1155/2017/3537026, 2017.
[15] Li D., Yang Q., Ma X., Dai G., Case study on application of the step with non-uniform heights at the bottom using a numerical and experimental model, Water (Switzerland) 10 (12) , doi:10.3390/w10121762, 2018.
[16] Li S., Zhang J., Xu W., Numerical investigation of air–water flow properties over steep flat and pooled stepped spillways, Journal of Hydraulic Research 56 (1): 1-14. doi:10.1080/00221686.2017.1286393, 2018.
 
 
[17] Parsaie A., Moradinejad A., Haghiabi AH., Numerical modeling of flow pattern in spillway approach channel, Jordan Journal of Civil Engineering 12 (1): 1-9, 2018.
[18] Morovati K., Eghbalzadeh A., Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D, International Journal of Numerical Methods for Heat and Fluid Flow 28 (4): 982-998, doi:10.1108/HFF-03-2017-0112, 2018.
[19] Li S., Zhang J., Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway, Water 10 (10):1478, 2018.
[20] Ashoor A., Riazi A., Stepped spillways and energy dissipation: A non-uniform step length approach, Applied Sciences (Switzerland) 9 (23) , doi:10.3390/app9235071, 2019.
[21] Ghaderi A., Abbasi S., Abraham J., Azamathulla HM., Efficiency of Trapezoidal Labyrinth Shaped stepped spillways, Flow Measurement and Instrumentation 72:101711, doi:https://doi.org/10.1016/j.flowmeasinst.2020.101711, 2020.
[22] Azman A., Ng FC, Zawawi MH., Abas A., Rozainy M. A. Z MR., Abustan I., Adlan MN., Tam WL., Effect of Barrier Height on the Design of Stepped Spillway Using Smoothed Particle Hydrodynamics and Particle Image Velocimetry, KSCE Journal of Civil Engineering 24 (2): 451-470, doi:10.1007/s12205-020-1605-x, 2020.
[23] Güven A., Mahmood AH., Numerical investigation of flow characteristics over stepped spillways, Water Supply in press, doi:10.2166/ws.2020.283, 2020.
[24] Ghaderi A., Daneshfaraz R., Torabi M., Abraham J., Azamathulla HM., Experimental investigation on effective scouring parameters downstream from stepped spillways, Water Supply 20 (5): 1988-1998. doi:10.2166/ws, 2020.113, 2020.
[25] Sotoudeh F., Pourabidi R., Mousavi SM., Goshtasbi-Rad E., Jeung I-S., Hybrid passive-active control method of a swept shock wave-supersonic wake interaction, Acta Astronautica 160:509-518, doi:https://doi.org/10.1016/j.actaastro.2019.02.023, 2019.
[26] Mousavi SM., Kamali R., Sotoudeh F., Karimi N., Khojasteh D., Large eddy simulation of pseudo shock structure in a convergent–long divergent duct, Computers & Mathematics with Applications, doi:https://doi.org/10.1016/j.camwa.2019.10.017, 2019.
[27] Mousavi SM., Kamali R., Mathematical Modeling of the Vortex Shedding Structure and Sound Pressure Level of a Large Wind Turbine Tower, International Journal of Applied Mechanics 12 (06):2050070, doi:10.1142/S1758825120500702, 2020.
[28] Sotoudeh F., Kamali R., Mousavi SM., Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region, Energy 181:745-759, doi:https://doi.org/10.1016/j.energy.2019.05.186, 2019.
[29] Binesh AR., Mousavi SM., Kamali R., Effect of temperature-dependency of Newtonian and non-Newtonian fluid properties on the dynamics of droplet impinging on hot surfaces, International Journal of Modern Physics C 26 (09):1550106, doi:10.1142/S0129183115501065, 2015.
[30] Mousavi SM., Kamali R., Experimental and numerical investigation of a new active control method to suppression of vortex shedding and reduction of sound pressure level of a circular cylinder, Aerospace Science and Technology 103:105907, doi:https://doi.org/10.1016/j.ast.2020.105907, 2020.
[31] Brackbill JU., Kothe DB., Zemach C., A continuum method for modeling surface tension, Journal of Computational Physics 100 (2):335-354, doi:https://doi.org/10.1016/0021-9991(92)90240-Y, 1992.
[32] Chaudhry MH.,  Open-channel flow, Springer Science & Business Media, 2007.
[33] Chitsomboon T. , and C. Thamthæ, Adjustment of k-w SST turbulence model for an improved prediction of stalls on wind turbine blades, World Renewable Energy Congress-Sweden, Linköping University Electronic Press, 2011.
[34] Menter F., Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows, 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, American Institute of Aeronautics and Astronautics, 1993.
[35] Menter  F., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal 32(8): 1598-1605, 1994.
[36] Chen Q., Dai G., Liu H., Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow, Journal of Hydraulic Engineering 128 (7): 683-688, doi:10.1061/(ASCE)0733-9429(2002)128:7(683), 2002.
[37] Mousavi SM., Roohi E., Large eddy simulation of shock train in a convergent–divergent nozzle, International Journal of Modern Physics C 25 (04):1450003, doi:10.1142/S012918311450003X, 2013.
[38] Song S., Eaton J., The effects of wall roughness on the separated flow over a smoothly contoured ramp, Experiments in Fluids 33 (1): 38-46, doi:10.1007/s00348-002-0411-1, 2002.
[39] Khojasteh D., Manshadi MKD., Mousavi SM., Sotoudeh F., Kamali R., Bordbar A., Electrically modulated droplet impingement onto hydrophilic and (super)hydrophobic solid surfaces, Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (4): 153, doi:10.1007/s40430-020-2241-6, 2020.
[40] Kamali R., Mousavi SM., Khojasteh D., Three-Dimensional Passive and Active Control Methods of Shock Wave Train Physics in a Duct, International Journal of Applied Mechanics 08 (04):1650047, doi:10.1142/S1758825116500472, 2016.
Volume 52, Issue 2
June 2021
Pages 332-349
  • Receive Date: 22 November 2020
  • Revise Date: 25 April 2021
  • Accept Date: 27 April 2021