[1] ECCS, Calculation of the Fire Resistance of Composite Concrete Slabs with Profiled Steel Sheet Exposed to the Standard Fire, Fire Safety of Steel Structures, European Convention for Constructional Steelwork - Committee T3, 1983.
[2] G. Thomson, C. K. Moxon, R. R. Preston, Indicative Fire Test on Composite Concrete/Steel Deck Floor System, Steel Construction Institute, Rotherham, pp. 1987.
[3] G. M. E. Cooke, R. M. Lawson, G. M. Newman, Fire resistance of composite deck slabs, The Structural Engineer, Vol. 66, No. 16, pp. 253–267, 1988.
[4] R. Hamerlink, J. W. B. Stark, A numerical model for fire-exposed composite steel / concrete slabs, in Proceeding of, 115–130.
[5] K. Both, Fire-exposed continuous span composite steel-concrete slabs, HERON, Vol. 41, No. 3, pp. 187-199, 1996.
[6] CEN, EN 1994-1-2: Design of Composite Steel and Concrete Structures. Part 1-2: General Rules - Structural Fire Design, European Committee for Standardization, 2005.
[7] L. Lim, C. Wade, Experimental Fire Tests of Two-Way Concrete Slabs, 722, University of Canterbury. Civil Engineering, pp. 1992.
[8] J. Jiang, A. Pintar, J. M. Weigand, J. A. Main, F. Sadek, Improved calculation method for insulation-based fire resistance of composite slabs, Fire Safety Journal, Vol. 105, pp. 144-153, 2019.
[9] P. A. G. Piloto, C. Balsa, L. Prates, R. Rigobello, The air gap effect on the fire resistance of composite slab with steel deck, in Numerical Methods in Engineering – CMN, 2019, pp. 610–624.
[10] P. A. G. Piloto, C. Balsa, F. Ribeiro, R. Rigobello, Computational Simulation of the Thermal Effects on Composite Slabs Under Fire Conditions, Mathematics in Computer Science, Vol. 15, No. 1, pp. 155-171, 2020.
[11] P. A. G. Piloto, C. Balsa, L. M. C. Santos, É. F. A. Kimura, Effect of the load level on the resistance of composite slabs with steel decking under fire conditions, Journal of Fire Sciences, Vol. 38, No. 2, pp. 212-231, 2020.
[12] R. Hamerlinck, The behaviour of fire-exposed composite steel/concrete slabs, Thesis, Technische Universiteit Eindhoven, Eindhoven, 1991.
[13] R. Hamerlinck, L. Twilt, Fire resistance of composite slabs, Journal of Constructional Steel Research, Vol. 33, No. 94, pp. 71–85, 1995.
[14] P. A. G. Piloto, C. Balsa, F. Ribeiro, L. Santos, R. Rigobello, É. Kimura, Three-Dimensional Numerical Modelling of Fire Exposed Composite Slabs with Steel Deck, MATTER: International Journal of Science and Technology, Vol. 5, No. 2, pp. 48-67, 2019.
[15] CEN, EN 1363-1: Fire resistance tests Part 1: General Requirements, CEN - European Committee for Standardization, 2004.
[16] CEN, EN 1363-1: Fire resistance tests Part 1 : General Requirements, CEN-Europ, European Committee for Standardization, 2020.
[17] CEN, EN 13501-2 Fire classification of construction products and building elements, European Committee for Standardization, 2009.
[18] CEN, EN 1991-1-2, Eurocode 1: Actions on structures – Part 1-2: General actions – Actions on structures exposed to fire, European Committee for Standardization, 2002.
[19] CEN, EN 1993-1-2: Design of steel structures - Part 1-2: General rules - Structural fire design Eurocode, European Committee for Standardization, 2005.
[20] G.-Q. Li, N. Zhang, J. Jiang, Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire, Fire Safety Journal, Vol. 89, pp. 63-76, 2017.
[21] J. Jiang, J. A. Main, J. M. Weigand, F. H. Sadek, Thermal performance of composite slabs with profiled steel decking exposed to fire effects, Fire Safety Journal, Vol. 95, pp. 25-41, 2018.
[22] ISO, ISO 834-1 Fire-resistance tests - Elements of building construction, International Standard Oganization, 1999.
[23] Y. A. Çengel, A. J. Ghajar, 2015, Heat and Mass Transfer: Fundamentals and Applications, McGraw-Hill, New York, 5ed.