[1] Rad ER, Vahabi H, de Anda AR, Saeb MR, Thomas S. Bio-epoxy resins with inherent flame retardancy. Progress in Organic Coatings. 2019;135:608-12.
[2] Rohani Rad E, Vahabi H, Formela K, Saeb MR, Thomas S. Injectable poloxamer/graphene oxide hydrogels with well‐controlled mechanical and rheological properties. Polymers for Advanced Technologies. 2019;30:2250-60.
[3] Vahabi H, Rad ER, Parpaite T, Langlois V, Saeb MR. Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)? Progress in Organic Coatings. 2019;133:85-9.
[4] Hadi A, Rastgoo A, Haghighipour N, Bolhassani A. Numerical modelling of a spheroid living cell membrane under hydrostatic pressure. Journal of Statistical Mechanics: Theory and Experiment. 2018;2018:083501.
[5] Barati A, Hadi A, Nejad MZ, Noroozi R. On vibration of bi-directional functionally graded nanobeams under magnetic field. Mechanics Based Design of Structures and Machines. 2020:1-18.
[6] Soleimani A, Dastani K, Hadi A, Naei MH. Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory. Steel and Composite Structures. 2019;30:517-34.
[7] Nejad MZ, Hadi A, Farajpour A. Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials. Structural engineering and mechanics: An international journal. 2017;63:161-9.
[8] Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Advanced materials. 2011;23:H18-H40.
[9] Farajpour M, Shahidi A, Hadi A, Farajpour A. Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms. Mechanics of Advanced Materials and Structures. 2019;26:1469-81.
[10] Asemi SR, Farajpour A, Borghei M, Hassani AH. Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics. Latin American Journal of Solids and Structures. 2014;11:704-24.
[11] Asemi SR, Farajpour A. Vibration characteristics of double-piezoelectric-nanoplate-systems. Micro & Nano Letters. 2014;9:280-5.
[12] Safarabadi M, Mohammadi M, Farajpour A, Goodarzi M. Effect of surface energy on the vibration analysis of rotating nanobeam. 2015.
[13] Mohammadi M, Farajpour A, Goodarzi M, Heydarshenas R. Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium. Journal of Solid Mechanics. 2013;5:116-32.
[14] Mohammadi M, Farajpour A, Goodarzi M, Dinari F. Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium. Latin American Journal of Solids and Structures. 2014;11:659-82.
[15] Farajpour MR, Shahidi AR, Farajpour A. Frequency behavior of ultrasmall sensors using vibrating SMA nanowire-reinforced sheets under a non-uniform biaxial preload. Materials Research Express. 2019;6:065047.
[16] Kordani N, Fereidoon A, Divsalar M, Farajpour A. Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory. Journal of Computational Applied Mechanics. 2016;47:137-50.
[17] Whitesides GM. The origins and the future of microfluidics. nature. 2006;442:368-73.
[18] Farajpour M, Shahidi A, Farajpour A. Elastic waves in fluid-conveying carbon nanotubes under magneto-hygro-mechanical loads via a two-phase local/nonlocal mixture model. Materials Research Express. 2019;6:0850a8.
[19] Farajpour A, Żur KK, Kim J, Reddy J. Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating MEE nanoplates with multiple nanoparticles. Composite Structures. 2021;260:113458.
[20] Asemi S, Farajpour A, Mohammadi M. Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory. Composite Structures. 2014;116:703-12.
[21] Gravesen P, Branebjerg J, Jensen OS. Microfluidics-a review. Journal of micromechanics and microengineering. 1993;3:168.
[22] Teh S-Y, Lin R, Hung L-H, Lee AP. Droplet microfluidics. Lab on a Chip. 2008;8:198-220.
[23] Bruus H. Theoretical microfluidics: Oxford university press Oxford, 2008.
[24] Hetsroni G, Mosyak A, Pogrebnyak E, Yarin L. Fluid flow in micro-channels. International Journal of Heat and Mass Transfer. 2005;48:1982-98.
[25] Martel JM, Toner M. Inertial focusing in microfluidics. Annual review of biomedical engineering. 2014;16:371-96.
[26] Karimi A, Yazdi S, Ardekani A. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics. 2013;7:021501.
[27] Hur SC, Choi S-E, Kwon S, Carlo DD. Inertial focusing of non-spherical microparticles. Applied Physics Letters. 2011;99:044101.
[28] Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Medical & biological engineering & computing. 2010;48:999-1014.
[29] Weibel DB, Whitesides GM. Applications of microfluidics in chemical biology. Current opinion in chemical biology. 2006;10:584-91.
[30] Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annual review of biomedical engineering. 2002;4:261-86.
[31] Segre G, Silberberg A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. Journal of fluid mechanics. 1962;14:136-57.
[32] Di Carlo D, Irimia D, Tompkins RG, Toner M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences. 2007;104:18892-7.
[33] Choi S, Park J-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab on a Chip. 2007;7:890-7.
[34] Choi S, Song S, Choi C, Park J-K. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Analytical chemistry. 2009;81:50-5.
[35] Huh D, Bahng JH, Ling Y, Wei H-H, Kripfgans OD, Fowlkes JB, et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Analytical chemistry. 2007;79:1369-76.
[36] Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluidics and nanofluidics. 2010;9:1143-9.
[37] Wang X-B, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR. Cell separation by dielectrophoretic field-flow-fractionation. Analytical chemistry. 2000;72:832-9.
[38] Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR. An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Progress in Polymer Science. 2009;34:351-68.
[39] Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, et al. Label-free cell separation and sorting in microfluidic systems. Analytical and bioanalytical chemistry. 2010;397:3249-67.
[40] McFaul SM, Lin BK, Ma H. Cell separation based on size and deformability using microfluidic funnel ratchets. Lab on a Chip. 2012;12:2369-76.
[41] Kralj JG, Lis MT, Schmidt MA, Jensen KF. Continuous dielectrophoretic size-based particle sorting. Analytical chemistry. 2006;78:5019-25.
[42] Zhu J, Tzeng TRJ, Xuan X. Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis. 2010;31:1382-8.
[43] Voldman J. Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng. 2006;8:425-54.
[44] Petersson F, Åberg L, Swärd-Nilsson A-M, Laurell T. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Analytical chemistry. 2007;79:5117-23.
[45] Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry: The Journal of the International Society for Analytical Cytology. 1990;11:231-8.
[46] Wang G, Yang F, Zhao W. There can be turbulence in microfluidics at low Reynolds number. Lab on a Chip. 2014;14:1452-8.
[47] Groisman A, Quake SR. A microfluidic rectifier: anisotropic flow resistance at low Reynolds numbers. Physical review letters. 2004;92:094501.
[48] Di Carlo D. Inertial microfluidics. Lab on a Chip. 2009;9:3038-46.
[49] Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab on a Chip. 2008;8:1906-14.
[50] Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip. 2009;9:2973-80.
[51] Rohani Rad E, Farajpour MR. Dynamics analysis of microparticles in inertial microfluidics for biomedical applications. Journal of Computational Applied Mechanics. 2019;50:157-64.
[52] Rohani Rad E, Farajpour MR. Influence of taxol and CNTs on the stability analysis of protein microtubules. Journal of Computational Applied Mechanics. 2019;50:140-7.
[53] Richardson JF, Harker JH, Backhurst JR. Particle technology and separation processes: Butterworth-Heinemann, 2002.
[54] Feng Z-G, Michaelides EE. Drag coefficients of viscous spheres at intermediate and high Reynolds numbers. J Fluids Eng. 2001;123:841-9.
[55] Gossett DR, Carlo DD. Particle focusing mechanisms in curving confined flows. Analytical chemistry. 2009;81:8459-65.
[56] Lu X, Liu C, Hu G, Xuan X. Particle manipulations in non-Newtonian microfluidics: A review. Journal of colloid and interface science. 2017;500:182-201.
[57] Elgeti J, Winkler RG, Gompper G. Physics of microswimmers—single particle motion and collective behavior: a review. Reports on progress in physics. 2015;78:056601.
[58] Stan CA, Ellerbee AK, Guglielmini L, Stone HA, Whitesides GM. The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels. Lab on a Chip. 2013;13:365-76.
[59] Liu C, Xue C, Sun J, Hu G. A generalized formula for inertial lift on a sphere in microchannels. Lab on a Chip. 2016;16:884-92.
[60] Longest PW, Kleinstreuer C, Buchanan JR. Efficient computation of micro-particle dynamics including wall effects. Computers & Fluids. 2004;33:577-601.
[61] Zhou J, Papautsky I. Fundamentals of inertial focusing in microchannels. Lab on a Chip. 2013;13:1121-32.
[62] Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M. Particle segregation and dynamics in confined flows. Physical review letters. 2009;102:094503.
[63] Feng J, Hu HH, Joseph DD. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. Journal of fluid mechanics. 1994;277:271-301.
[64] Matas J, Morris J, Guazzelli E. Lateral forces on a sphere. Oil & gas science and technology. 2004;59:59-70.
[65] Michaelides E. Particles, bubbles & drops: their motion, heat and mass transfer: World Scientific, 2006.
[66] Brenner H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical engineering science. 1961;16:242-51.
[67] Cox R, Hsu S. The lateral migration of solid particles in a laminar flow near a plane. International Journal of Multiphase Flow. 1977;3:201-22.
[68] Vasseur P, Cox R. The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. Journal of fluid mechanics. 1977;80:561-91.
[69] Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. Inertial microfluidics for continuous particle filtration and extraction. Microfluidics and nanofluidics. 2009;7:217-26.
[70] Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Warkiani ME, et al. Fundamentals and applications of inertial microfluidics: a review. Lab on a Chip. 2016;16:10-34.
[71] Segre G, Silberberg A. Radial particle displacements in Poiseuille flow of suspensions. Nature. 1961;189:209-10.
[72] Asmolov ES. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. Journal of fluid mechanics. 1999;381:63-87.
[73] Amini H, Lee W, Di Carlo D. Inertial microfluidic physics. Lab on a Chip. 2014;14:2739-61.
[74] Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW, et al. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nature communications. 2014;5:1-9.
[75] Hur SC, Henderson-MacLennan NK, McCabe ER, Di Carlo D. Deformability-based cell classification and enrichment using inertial microfluidics. Lab on a Chip. 2011;11:912-20.
[76] Chan P-H, Leal L. The motion of a deformable drop in a second-order fluid. Journal of fluid mechanics. 1979;92:131-70.
[77] Hou HW, Bhagat AAS, Chong AGL, Mao P, Tan KSW, Han J, et al. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab on a Chip. 2010;10:2605-13.
[78] Levesley J, Bellhouse B. Particulate separation using inertial lift forces. Chemical engineering science. 1993;48:3657-69.
[79] Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M. Equilibrium separation and filtration of particles using differential inertial focusing. Analytical chemistry. 2008;80:2204-11.
[80] Matas J-P, Morris JF, Guazzelli É. Inertial migration of rigid spherical particles in Poiseuille flow. Journal of fluid mechanics. 2004;515:171-95.
[81] Choi Y-S, Seo K-W, Lee S-J. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab on a Chip. 2011;11:460-5.
[82] Lashgari I, Ardekani MN, Banerjee I, Russom A, Brandt L. Inertial migration of spherical and oblate particles in straight ducts. Journal of fluid mechanics. 2017;819:540-61.
[83] Li M, van Zee M, Goda K, Di Carlo D. Size-based sorting of hydrogel droplets using inertial microfluidics. Lab on a Chip. 2018;18:2575-82.
[84] Li M, Muñoz HE, Goda K, Di Carlo D. Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Scientific reports. 2017;7:1-8.
[85] Kim J-A, Lee J, Wu C, Nam S, Di Carlo D, Lee W. Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions. Lab on a Chip. 2016;16:992-1001.
[86] Seo J, Lean MH, Kole A. Membrane-free microfiltration by asymmetric inertial migration. Applied Physics Letters. 2007;91:033901.
[87] Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS. Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab on a Chip. 2009;9:87-90.
[88] Warkiani ME, Khoo BL, Wu L, Tay AKP, Bhagat AAS, Han J, et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nature protocols. 2016;11:134.
[89] Lee J-H, Lee S-K, Kim J-H, Park J-H. Separation of particles with bacterial size range using the control of sheath flow ratio in spiral microfluidic channel. Sensors and Actuators A: Physical. 2019;286:211-9.
[90] Xiang N, Ni Z, Yi H. Concentration‐controlled particle focusing in spiral elasto‐inertial microfluidic devices. Electrophoresis. 2018;39:417-24.
[91] Edd JF, Di Carlo D, Humphry KJ, Köster S, Irimia D, Weitz DA, et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip. 2008;8:1262-4.
[92] Yin P, Zhao L, Chen Z, Jiao Z, Shi H, Hu B, et al. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidics via commercial 3D-printers. Soft Matter. 2020.
[93] Zhang J, Yuan D, Sluyter R, Yan S, Zhao Q, Xia H, et al. High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE transactions on biomedical circuits and systems. 2017;11:1422-30.
[94] Zhao Y, Sharp M. Finite element analysis of the lift on a slightly deformable and freely rotating and translating cylinder in two-dimensional channel flow. 1999.
[95] Palumbo J, Navi M, Tsai SS, Spelt JK, Papini M. Lab on a rod: Size-based particle separation and sorting in a helical channel. Biomicrofluidics. 2020;14:064104.
[96] Banerjee R, Kumar SJ, Mehendale N, Sevda S, Garlapati VK. Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects. Renewable and Sustainable Energy Reviews. 2019;101:548-58.