[1] S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, Journal of the Mechanics and Physics of Solids, Vol. 59, No. 11, pp. 2259-2278, 2011.
[2] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, A theory of constrained swelling of a pH-sensitive hydrogel, Soft Matter, Vol. 6, No. 4, 2010.
[3] S. K. De, N. R. Aluru, A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels, Mechanics of Materials, Vol. 36, No. 5-6, pp. 395-410, 2004.
[4] S. Zheng, Z. Liu, Constitutive model of salt concentration-sensitive hydrogel, Mechanics of Materials, Vol. 136, 2019.
[5] A. Suzuki, Phase transition in gels of sub-millimeter size induced by interaction with stimuli, in: Responsive gels: volume transitions II, Eds., pp. 199-240: Springer, 1993.
[6] N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Advanced Materials, Vol. 18, No. 11, pp. 1345-1360, 2006.
[7] L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuli-responsive hydrogels, Nature, Vol. 442, No. 7102, pp. 551-4, Aug 3, 2006.
[8] C. Yang, W. Wang, C. Yao, R. Xie, X. J. Ju, Z. Liu, L. Y. Chu, Hydrogel Walkers with Electro-Driven Motility for Cargo Transport, Sci Rep, Vol. 5, pp. 13622, Aug 28, 2015.
[9] L. Ionov, Hydrogel-based actuators: possibilities and limitations, Materials Today, Vol. 17, No. 10, pp. 494-503, 2014.
[10] L. Dong, H. Jiang, Autonomous microfluidics with stimuli-responsive hydrogels, Soft Matter, Vol. 3, No. 10, 2007.
[11] L. D'Eramo, B. Chollet, M. Leman, E. Martwong, M. Li, H. Geisler, J. Dupire, M. Kerdraon, C. Vergne, F. Monti, Y. Tran, P. Tabeling, Microfluidic actuators based on temperature-responsive hydrogels, Microsystems & Nanoengineering, Vol. 4, 2018.
[12] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B.-H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, Vol. 404, No. 6778, pp. 588, 2000.
[13] D. Kim, D. J. Beebe, A bi-polymer micro one-way valve, Sensors and Actuators A: Physical, Vol. 136, No. 1, pp. 426-433, 2007.
[14] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study, Smart Materials and Structures, Vol. 24, No. 4, 2015.
[15] A. Agarwal, S. Sridharamurthy, T. Pearce, G. Mensing, D. Beebe, H. Jiang, Magnetically-driven actuation using liquid-phase polymerization (LPP) and its application: a programmable mixer, in Proceeding of, 121-4.
[16] R. Noroozi, M. Bodaghi, H. Jafari, A. Zolfagharian, M. Fotouhi, Shape-adaptive metastructures with variable bandgap regions by 4D printing, Polymers, Vol. 12, No. 3, pp. 519, 2020.
[17] L. D'Eramo, B. Chollet, M. Leman, E. Martwong, M. Li, H. Geisler, J. Dupire, M. Kerdraon, C. Vergne, F. Monti, Y. Tran, P. Tabeling, Microfluidic actuators based on temperature-responsive hydrogels, Microsystems & Nanoengineering, Vol. 4, No. 1, pp. 1-7, 2018.
[18] H. Mazaheri, A. H. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, Journal of Intelligent Material Systems and Structures, Vol. 29, No. 20, pp. 3960-3971, 2018.
[19] E. Yarali, R. Noroozi, A. Yousefi, M. Bodaghi, M. Baghani, Multi-Trigger Thermo-Electro-Mechanical Soft Actuators under Large Deformations, Polymers, Vol. 12, No. 2, pp. 489, 2020.
[20] E. Yarali, R. Noroozi, A. Moallemi, A. Taheri, M. Baghani, Developing an analytical solution for a thermally tunable soft actuator under finite bending, Mechanics Based Design of Structures and Machines, pp. 1-15, 2020.
[21] S. A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, Journal of the Mechanics and Physics of Solids, Vol. 58, No. 11, pp. 1879-1906, 2010.
[22] W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, pp. 1779-1793, 2008.
[23] F. P. Duda, A. C. Souza, E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, Journal of the Mechanics and Physics of Solids, Vol. 58, No. 4, pp. 515-529, 2010.
[24] H. Mazaheri, M. Baghani, R. Naghdabadi, Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels, Journal of Intelligent Material Systems and Structures, Vol. 27, No. 3, pp. 324-336, 2015.
[25] S. A. Chester, L. Anand, A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels, Journal of the Mechanics and Physics of Solids, Vol. 59, No. 10, pp. 1978-2006, 2011.
[26] N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. Mosavi-Mashhadi, Study on pH-sensitive hydrogel micro-valves: A fluid–structure interaction approach, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 12, pp. 1589-1602, 2017.
[27] A. Kargar-Estahbanaty, M. Baghani, H. Shahsavari, G. Faraji, A combined analytical–numerical investigation on photosensitive hydrogel micro-valves, International Journal of Applied Mechanics, Vol. 9, No. 07, pp. 1750103, 2017.
[28] H. Mazaheri, A. Ghasemkhani, Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell, Journal of Stress Analysis, Vol. 3, No. 2, pp. 29-35, 2019.
[29] M. Shojaeifard, S. Tahmasiyan, M. Baghani, Swelling response of functionally graded temperature-sensitive hydrogel valves: Analytic solution and finite element method, Journal of Intelligent Material Systems and Structures, Vol. 31, No. 3, pp. 457-474, 2019.
[30] S. Cai, Y. Lou, P. Ganguly, A. Robisson, Z. Suo, Force generated by a swelling elastomer subject to constraint, Journal of Applied Physics, Vol. 107, No. 10, 2010.
[31] Y. Liu, H. Zhang, J. Zhang, Y. Zheng, Transient swelling of polymeric hydrogels: A new finite element solution framework, International Journal of Solids and Structures, Vol. 80, pp. 246-260, 2016.
[32] M. Guvendiren, S. Yang, J. A. Burdick, Swelling‐induced surface patterns in hydrogels with gradient crosslinking density, Advanced Functional Materials, Vol. 19, No. 19, pp. 3038-3045, 2009.
[33] D. Wang, M. S. Wu, Stress and displacement fields in soft cylindrical multilayers, International Journal of Solids and Structures, Vol. 50, No. 3-4, pp. 511-518, 2013.
[34] M. R. Bayat, A. Kargar-Estahbanaty, M. Baghani, A semi-analytical solution for finite bending of a functionally graded hydrogel strip, Acta Mechanica, Vol. 230, No. 7, pp. 2625-2637, 2019.
[35] H. Mazaheri, A. Ghasemkhani, S. Sabbaghi, Study of Fluid-Structure Interaction in a Functionally Graded Ph-Sensitive Hydrogel Micro-Valve, International Journal of Applied Mechanics, 2020.
[36] E. Sato Matsuo, T. Tanaka, Kinetics of discontinuous volume–phase transition of gels, The Journal of Chemical Physics, Vol. 89, No. 3, pp. 1695-1703, 1988.
[37] Z. Ding, W. Toh, J. Hu, Z. Liu, T. Y. Ng, A simplified coupled thermo-mechanical model for the transient analysis of temperature-sensitive hydrogels, Mechanics of Materials, Vol. 97, pp. 212-227, 2016.
[38] P. J. Flory, J. Rehner, Statistical Mechanics of Cross‐Linked Polymer Networks II. Swelling, The Journal of Chemical Physics, Vol. 11, No. 11, pp. 521-526, 1943.
[39] P. J. Flory, Thermodynamics of high polymer solutions, The Journal of chemical physics, Vol. 10, No. 1, pp. 51-61, 1942.
[40] M. L. Huggins, Solutions of long chain compounds, The Journal of chemical physics, Vol. 9, No. 5, pp. 440-440, 1941.
[41] F. Afroze, E. Nies, H. Berghmans, Phase transitions in the system poly (N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks, Journal of Molecular Structure, Vol. 554, No. 1, pp. 55-68, 2000.
[42] T. Bertrand, J. Peixinho, S. Mukhopadhyay, C. W. MacMinn, Dynamics of swelling and drying in a spherical gel, Physical Review Applied, Vol. 6, No. 6, pp. 064010, 2016.
[43] M. Tokita, T. Tanaka, Friction coefficient of polymer networks of gels, The Journal of chemical physics, Vol. 95, No. 6, pp. 4613-4619, 1991.
[44] A. D. Drozdov, A. Papadimitriou, J. Liely, C.-G. Sanporean, Constitutive equations for the kinetics of swelling of hydrogels, Mechanics of Materials, Vol. 102, pp. 61-73, 2016.
[45] J. Yoon, S. Cai, Z. Suo, R. C. Hayward, Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment, Soft Matter, Vol. 6, No. 23, 2010.
[46] W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, International Journal of Solids and Structures, Vol. 46, No. 17, pp. 3282-3289, 2009.